图书介绍

FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITS【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITS
  • ANANT AGARWAL 著
  • 出版社:
  • ISBN:
  • 出版时间:2005
  • 标注页数:984页
  • 文件大小:72MB
  • 文件页数:1005页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITSPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 The Circuit Abstraction3

1.1 The Power of Abstraction3

1.2 The Lumped Circuit Abstraction5

1.3 The Lumped Matter Discipline9

1.4 Limitations of the Lumped Circuit Abstraction13

1.5 Practical Two-Terminal Elements15

1.5.1 Batteries16

1.5.2 Linear Resistors18

1.5.3 Associated Variables Convention25

1.6 Ideal Two-Terminal Elements29

1.6.1 Ideal Voltage Sources, Wires, and Resistors30

1.6.2 Element Laws32

1.6.3 The Current Source — Another Ideal Two-Terminal Element33

1.7 Modeling Physical Elements36

1.8 Signal Representation40

1.8.1 Analog Signals41

1.8.2 Digital Signals—Value Discretization43

1.9 Summary and Exercises46

CHAPTER 2 Resistive Networks53

2.1 Terminology54

2.2 Kirchhoff's Laws55

2.2.1 KCL56

2.2.2 KVL60

2.3 Circuit Analysis: Basic Method66

2.3.1 Single-Resistor Circuits67

2.3.2 Quick Intuitive Analysis of Single-Resistor Circuits70

2.3.3 Energy Conservation71

2.3.4 Voltage and Current Dividers73

2.3.5 A More Complex Circuit84

2.4 Intuitive Method of Circuit Analysis: Series and Parallel Simplification89

2.5 More Circuit Examples95

2.6 Dependent Sources and the Control Concept98

2.6.1 Circuits with Dependent Sources102

2.7 A Formulation Suitable for a Computer Solution107

2.8 Summary and Exercises108

CHAPTER 3 Network Theorems119

3.1 Introduction119

3.2 The Node Voltage119

3.3 The Node Method125

3.3.1 Node Method: A Second Example130

3.3.2 Floating Independent Voltage Sources135

3.3.3 Dependent Sources and the Node Method139

3.3.4 The Conductance and Source Matrices145

3.4 Loop Method145

3.5 Superposition145

3.5.1 Superposition Rules for Dependent Sources153

3.6 Thevenin's Theorem and Norton's Theorem157

3.6.1 The Thevenin Equivalent Network157

3.6.2 The Norton Equivalent Network167

3.6.3 More Examples171

3.7 Summary and Exercises177

CHAPTER 4 Analysis of Nonlinear Circuits193

4.1 Introduction to Nonlinear Elements193

4.2 Analytical Solutions197

4.3 Graphical Analysis203

4.4 Piecewise Linear Analysis206

4.4.1 Improved Piecewise Linear Models for Nonlinear Elements214

4.5 Incremental Analysis214

4.6 Summary and Exercises229

CHAPTER 5 The Digital Abstraction243

5.1 Voltage Levels and the Static Discipline245

5.2 Boolean Logic256

5.3 Combinational Gates258

5.4 Standard Sum-of-Products Representation261

5.5 Simplifying Logic Expressions262

5.6 Number Representation267

5.7 Summary and Exercises274

CHAPTER 6 The MOSFET Switch285

6.1 The Switch285

6.2 Logic Functions Using Switches288

6.3 The MOSFET Device and Its S Model288

6.4 MOSFET Switch Implementation of Logic Gates291

6.5 Static Analysis Using the S Model296

6.6 The SR Model of the MOSFET300

6.7 Physical Structure of the MOSFET301

6.8 Static Analysis Using the SR Model306

6.8.1 Static Analysis of the NAND Gate Using the SR Model311

6.9 Signal Restoration, Gain, and Nonhneanty314

6.9.1 Signal Restoration and Gain314

6.9.2 Signal Restoration and Nonhneanty317

6.9.3 Buffer Transfer Characteristics and the Static Discipline318

6.9.4 Inverter Transfer Characteristics and the Static Discipline319

6.10 Power Consumption in Logic Gates320

6.11 Active Pullups321

6.12 Summary and Exercises322

CHAPTER 7 The MOSFET Amplifier331

7.1 Signal Amplification331

7.2 Review of Dependent Sources332

7.3 Actual MOSFET Characteristics335

7.4 The Switch-Current Source (SCS) MOSFET Model340

7.5 The MOSFET Amplifier344

7.5.1 Biasing the MOSFET Amplifier349

7.5.2 The Amplifier Abstraction and the Saturation Discipline352

7.6 Large-Signal Analysis of the MOSFET Amplifier353

7.6.1 vIN Versus vOUT in the Saturation Region353

7.6.2 Valid Input and Output Voltage Ranges356

7.6.3 Alternative Method for Valid Input and Output Voltage Ranges363

7.7 Operating Point Selection365

7.8 Switch Unified (SU) MOSFET Model386

7.9 Summary and Exercises389

CHAPTER 8 The Small-Signal Model405

8.1 Overview of the Nonlinear MOSFET Amplifier405

8.2 The Small-Signal Model405

8.2.1 Small-Signal Circuit Representation413

8.2.2 Small-Signal Circuit for the MOSFET Amplifier418

8.2.3 Selecting an Operating Point420

8.2.4 Input and Output Resistance, Current and Power Gain423

8.3 Summary and Exercises447

CHAPTER 9 Energy Storage Elements457

9.1 Constitutive Laws461

9.1.1 Capacitors461

9.1.2 Inductors466

9.2 Series and Parallel Connections470

9.2.1 Capacitors471

9.2.2 Inductors472

9.3 Special Examples473

9.3.1 MOSFET Gate Capacitance473

9.3.2 Wiring Loop Inductance476

9.3.3 IC Wiring Capacitance and Inductance477

9.3.4 Transformers478

9.4 Simple Circuit Examples480

9.4.1 Sinusoidal Inputs482

9.4.2 Step Inputs482

9.4.3 Impulse Inputs488

9.4.4 Role Reversal489

9.5 Energy, Charge, and Flux Conservation489

9.6 Summary and Exercises492

CHAPTER 10 First-Order Transients in Linear Electrical Networks503

10.1 Analysis of RC Circuits504

10.1.1 Parallel RC Circuit, Step Input504

10.1.2 RC Discharge Transient509

10.1.3 Series RC Circuit, Step Input511

10.1.4 Series RC Circuit, Square-Wave Input515

10.2 Analysis of RL Circuits517

10.2.1 Series RL Circuit, Step Input517

10.3 Intuitive Analysis520

10.4 Propagation Delay and the Digital Abstraction525

10.4.1 Definitions of Propagation Delays527

10.4.2 Computing tpd from the SRC MOSFET Model529

10.5 State and State Variables538

10.5.1 The Concept of State538

10.5.2 Computer Analysis Using the State Equation540

10.5.3 Zero-Input and Zero-State Response541

10.5.4 Solution by Integrating Factors544

10.6 Additional Examples545

10.6.1 Effect of Wire Inductance in Digital Circuits545

10.6.2 Ramp Inputs and Linearity545

10.6.3 Response of an RC Circuit to Short Pulses and the Impulse Response550

10.6.4 Intuitive Method for the Impulse Response553

10.6.5 Clock Signals and Clock Fanout554

10.6.6 RC Response to Decaying Exponential558

10.6.7 Series RL Circuit with Sine-Wave Input558

10.7 Digital Memory561

10.7.1 The Concept of Digital State561

10.7.2 An Abstract Digital Memory Element562

10.7.3 Design of the Digital Memory Element563

10.7.4 A Static Memory Element567

10.8 Summary and Exercises568

CHAPTER 11 Energy and Power in Digital Circuits595

11.1 Power and Energy Relations for a Simple RC Circuit595

11.2 Average Power in an RC Circuit597

11.2.1 Energy Dissipated During Interval T1599

11.2.2 Energy Dissipated During Interval T2601

11.2.3 Total Energy Dissipated603

11.3 Power Dissipation in Logic Gates604

11.3.1 Static Power Dissipation604

11.3.2 Total Power Dissipation605

11.4 NMOS Logic611

11.5 CMOS Logic611

11.5.1 CMOS Logic Gate Design616

11.6 Summary and Exercises618

CHAPTER 12 Transients in Second-Order Circuits625

12.1 Undriven LC Circuit627

12.2 Undriven, Series RLC Circuit640

12.2.1 Under-Damped Dynamics644

12.2.2 Over-Damped Dynamics648

12.2.3 Critically-Damped Dynamics649

12.3 Stored Energy in Transient, Series RLC Circuit651

12.4 Undriven, Parallel RLC Circuit654

12.4.1 Under-Damped Dynamics654

12.4.2 Over-Damped Dynamics654

12.4.3 Critically-Damped Dynamics654

12.5 Driven, Series RLC Circuit654

12.5.1 Step Response657

12.5.2 Impulse Response661

12.6 Driven, Parallel RLC Circuit678

12.6.1 Step Response678

12.6.2 Impulse Response678

12.7 Intuitive Analysis of Second-Order Circuits678

12.8 Two-Capacitor or Two-Inductor Circuits684

12.9 State-Variable Method689

12.10 State-Space Analysis691

12.10.1 Numerical Solution691

12.11 Higher-Order Circuits691

12.12 Summary and Exercises692

CHAPTER 13 Sinusoidal Steady State: Impedance and Frequency Response703

13.1 Introduction703

13.2 Analysis Using Complex Exponential Drive706

13.2.1 Homogeneous Solution706

13.2.2 Particular Solution707

13.2.3 Complete Solution710

13.2.4 Sinusoidal Steady-State Response710

13.3 The Boxes: Impedance712

13.3.1 Example: Series RL Circuit718

13.3.2 Example: Another RC Circuit722

13.3.3 Example: RC Circuit with Two Capacitors724

13.3.4 Example: Analysis of Small Signal Amplifier with Capacitive Load729

13.4 Frequency Response: Magnitude and Phase versus Frequency731

13.4.1 Frequency Response of Capacitors, Inductors,and Resistors732

13.4.2 Intuitively Sketching the Frequency Response of RC and RL Circuits737

13.4.3 The Bode Plot: Sketching the Frequency Response of General Functions741

13.5 Filters742

13.5.1 Filter Design Example: Crossover Network744

13.5.2 Decoupling Amplifier Stages746

13.6 Time Domain versus Frequency Domain Analysis using Voltage-Divider Example751

13.6.1 Frequency Domain Analysis751

13.6.2 Time Domain Analysis754

13.6.3 Comparing Time Domain and Frequency Domain Analyses756

13.7 Power and Energy in an Impedance757

13.7.1 Arbitrary Impedance758

13.7.2 Pure Resistance760

13.7.3 Pure Reactance761

13.7.4 Example: Power in an RC Circuit763

13.8 Summary and Exercises765

CHAPTER 14 Sinusoidal Steady State: Resonance777

14.1 Parallel RLC, Sinusoidal Response777

14.1.1 Homogeneous Solution778

14.1.2 Particular Solution780

14.1.3 Total Solution for the Parallel RLC Circuit781

14.2 Frequency Response for Resonant Systems783

14.2.1 The Resonant Region of the Frequency Response792

14.3 Series RLC801

14.4 The Bode Plot for Resonant Functions808

14.5 Filter Examples808

14.5.1 Band-pass Filter809

14.5.2 Low-pass Filter810

14.5.3 High-pass Filter814

14.5.4 Notch Filter815

14.6 Stored Energy in a Resonant Circuit816

14.7 Summary and Exercises821

CHAPTER 15 The Operational Amplifier Abstraction837

15.1 Introduction837

15.1.1 Historical Perspective838

15.2 Device Properties of the Operational Amplifier839

15.2.1 The Op Amp Model839

15.3 Simple Op Amp Circuits842

15.3.1 The Non-Inverting Op Amp842

15.3.2 A Second Example: The Inverting Connection844

15.3.3 Sensitivity846

15.3.4 A Special Case: The Voltage Follower847

15.3.5 An Additional Constraint: v+ - v- ≈ 0848

15.4 Input and Output Resistances849

15.4.1 Output Resistance, Inverting Op Amp849

15.4.2 Input Resistance Inverting Connection851

15.4.3 Input and Output R For Non-Inverting Op Amp853

15.4.4 Generalization on Input Resistance855

15.4.5 Example: Op Amp Current Source855

15.5 Additional Examples857

15.5.1 Adder858

15.5.2 Subtracter858

15.6 Op Amp RC Circuits859

15.6.1 Op Amp Integrator859

15.6.2 Op Amp Differentiator862

15.6.3 An RC Active Filter863

15.6.4 The RC Active Filter—Impedance Analysis865

15.6.5 Sallen-Key Filter866

15.7 Op Amp in Saturation866

15.7.1 Op Amp Integrator in Saturation867

15.8 Positive Feedback869

15.8.1 RC Oscillator869

15.9 Two-Ports872

15.10 Summary and Exercises873

CHAPTER 16 Diodes905

16.1 Introduction905

16.2 Semiconductor Diode Characteristics905

16.3 Analysis of Diode Circuits908

16.3.1 Method of Assumed States908

16.4 Nonlinear Analysis with RL and RC912

16.4.1 Peak Detector912

16.4.2 Example: Clamping Circuit915

16.4.3 A Switched Power Supply using a Diode918

16.5 Additional Examples918

16.5.1 Piecewise Linear Example: Clipping Circuit918

16.5.2 Exponentiation Circuit918

16.5.3 Piecewise Linear Example: Limiter918

16.5.4 Example: Fidl-Wave Diode Bridge918

16.5.5 Incremental Example: Zener-Diode Regulator918

16.5.6 Incremental Example: Diode Attenuator918

16.6 Summary and Exercises919

APPENDIX A Maxwell's Equations and the Lumped Matter Discipline927

A.1 The Lumped Matter Discipline927

A.1.1 The First Constraint of the Lumped Matter Discipline927

A.1.2 The Second Constraint of the Lumped Matter Discipline930

A.1.3 The Third Constraint of the Lumped Matter Discipline932

A.1.4 The Lumped Matter Discipline Applied to Circuits933

A.2 Deriving Kirchhoff's Laws934

A.3 Deriving the Resistance of a Piece of Material936

APPENDIX B Trigonometric Functions and Identities941

B.l Negative Arguments941

B.2 Phase-Shifted Arguments942

B.3 Sum and Difference Arguments942

B.4 Products943

B.5 Half-Angle and Twice-Angle Arguments943

B.6 Squares943

B.7 Miscellaneous943

B.8 Taylor Series Expansions944

B.9 Relations to ejo944

APPENDIX C Complex Numbers947

C.1 Magnitude and Phase947

C.2 Polar Representation948

C.3 Addition and Subtraction949

C.4 Multiplication and Division949

C.5 Complex Conjugate950

C.6 Properties of ejo951

C.7 Rotation951

C.8 Complex Functions of Time952

C.9 Numerical Examples952

APPENDIX D Solving Simultaneous Linear Equations957

Answers to Selected Problems959

Figure Credits971

Index973

热门推荐