图书介绍
FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITS【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- ANANT AGARWAL 著
- 出版社:
- ISBN:
- 出版时间:2005
- 标注页数:984页
- 文件大小:72MB
- 文件页数:1005页
- 主题词:
PDF下载
下载说明
FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 The Circuit Abstraction3
1.1 The Power of Abstraction3
1.2 The Lumped Circuit Abstraction5
1.3 The Lumped Matter Discipline9
1.4 Limitations of the Lumped Circuit Abstraction13
1.5 Practical Two-Terminal Elements15
1.5.1 Batteries16
1.5.2 Linear Resistors18
1.5.3 Associated Variables Convention25
1.6 Ideal Two-Terminal Elements29
1.6.1 Ideal Voltage Sources, Wires, and Resistors30
1.6.2 Element Laws32
1.6.3 The Current Source — Another Ideal Two-Terminal Element33
1.7 Modeling Physical Elements36
1.8 Signal Representation40
1.8.1 Analog Signals41
1.8.2 Digital Signals—Value Discretization43
1.9 Summary and Exercises46
CHAPTER 2 Resistive Networks53
2.1 Terminology54
2.2 Kirchhoff's Laws55
2.2.1 KCL56
2.2.2 KVL60
2.3 Circuit Analysis: Basic Method66
2.3.1 Single-Resistor Circuits67
2.3.2 Quick Intuitive Analysis of Single-Resistor Circuits70
2.3.3 Energy Conservation71
2.3.4 Voltage and Current Dividers73
2.3.5 A More Complex Circuit84
2.4 Intuitive Method of Circuit Analysis: Series and Parallel Simplification89
2.5 More Circuit Examples95
2.6 Dependent Sources and the Control Concept98
2.6.1 Circuits with Dependent Sources102
2.7 A Formulation Suitable for a Computer Solution107
2.8 Summary and Exercises108
CHAPTER 3 Network Theorems119
3.1 Introduction119
3.2 The Node Voltage119
3.3 The Node Method125
3.3.1 Node Method: A Second Example130
3.3.2 Floating Independent Voltage Sources135
3.3.3 Dependent Sources and the Node Method139
3.3.4 The Conductance and Source Matrices145
3.4 Loop Method145
3.5 Superposition145
3.5.1 Superposition Rules for Dependent Sources153
3.6 Thevenin's Theorem and Norton's Theorem157
3.6.1 The Thevenin Equivalent Network157
3.6.2 The Norton Equivalent Network167
3.6.3 More Examples171
3.7 Summary and Exercises177
CHAPTER 4 Analysis of Nonlinear Circuits193
4.1 Introduction to Nonlinear Elements193
4.2 Analytical Solutions197
4.3 Graphical Analysis203
4.4 Piecewise Linear Analysis206
4.4.1 Improved Piecewise Linear Models for Nonlinear Elements214
4.5 Incremental Analysis214
4.6 Summary and Exercises229
CHAPTER 5 The Digital Abstraction243
5.1 Voltage Levels and the Static Discipline245
5.2 Boolean Logic256
5.3 Combinational Gates258
5.4 Standard Sum-of-Products Representation261
5.5 Simplifying Logic Expressions262
5.6 Number Representation267
5.7 Summary and Exercises274
CHAPTER 6 The MOSFET Switch285
6.1 The Switch285
6.2 Logic Functions Using Switches288
6.3 The MOSFET Device and Its S Model288
6.4 MOSFET Switch Implementation of Logic Gates291
6.5 Static Analysis Using the S Model296
6.6 The SR Model of the MOSFET300
6.7 Physical Structure of the MOSFET301
6.8 Static Analysis Using the SR Model306
6.8.1 Static Analysis of the NAND Gate Using the SR Model311
6.9 Signal Restoration, Gain, and Nonhneanty314
6.9.1 Signal Restoration and Gain314
6.9.2 Signal Restoration and Nonhneanty317
6.9.3 Buffer Transfer Characteristics and the Static Discipline318
6.9.4 Inverter Transfer Characteristics and the Static Discipline319
6.10 Power Consumption in Logic Gates320
6.11 Active Pullups321
6.12 Summary and Exercises322
CHAPTER 7 The MOSFET Amplifier331
7.1 Signal Amplification331
7.2 Review of Dependent Sources332
7.3 Actual MOSFET Characteristics335
7.4 The Switch-Current Source (SCS) MOSFET Model340
7.5 The MOSFET Amplifier344
7.5.1 Biasing the MOSFET Amplifier349
7.5.2 The Amplifier Abstraction and the Saturation Discipline352
7.6 Large-Signal Analysis of the MOSFET Amplifier353
7.6.1 vIN Versus vOUT in the Saturation Region353
7.6.2 Valid Input and Output Voltage Ranges356
7.6.3 Alternative Method for Valid Input and Output Voltage Ranges363
7.7 Operating Point Selection365
7.8 Switch Unified (SU) MOSFET Model386
7.9 Summary and Exercises389
CHAPTER 8 The Small-Signal Model405
8.1 Overview of the Nonlinear MOSFET Amplifier405
8.2 The Small-Signal Model405
8.2.1 Small-Signal Circuit Representation413
8.2.2 Small-Signal Circuit for the MOSFET Amplifier418
8.2.3 Selecting an Operating Point420
8.2.4 Input and Output Resistance, Current and Power Gain423
8.3 Summary and Exercises447
CHAPTER 9 Energy Storage Elements457
9.1 Constitutive Laws461
9.1.1 Capacitors461
9.1.2 Inductors466
9.2 Series and Parallel Connections470
9.2.1 Capacitors471
9.2.2 Inductors472
9.3 Special Examples473
9.3.1 MOSFET Gate Capacitance473
9.3.2 Wiring Loop Inductance476
9.3.3 IC Wiring Capacitance and Inductance477
9.3.4 Transformers478
9.4 Simple Circuit Examples480
9.4.1 Sinusoidal Inputs482
9.4.2 Step Inputs482
9.4.3 Impulse Inputs488
9.4.4 Role Reversal489
9.5 Energy, Charge, and Flux Conservation489
9.6 Summary and Exercises492
CHAPTER 10 First-Order Transients in Linear Electrical Networks503
10.1 Analysis of RC Circuits504
10.1.1 Parallel RC Circuit, Step Input504
10.1.2 RC Discharge Transient509
10.1.3 Series RC Circuit, Step Input511
10.1.4 Series RC Circuit, Square-Wave Input515
10.2 Analysis of RL Circuits517
10.2.1 Series RL Circuit, Step Input517
10.3 Intuitive Analysis520
10.4 Propagation Delay and the Digital Abstraction525
10.4.1 Definitions of Propagation Delays527
10.4.2 Computing tpd from the SRC MOSFET Model529
10.5 State and State Variables538
10.5.1 The Concept of State538
10.5.2 Computer Analysis Using the State Equation540
10.5.3 Zero-Input and Zero-State Response541
10.5.4 Solution by Integrating Factors544
10.6 Additional Examples545
10.6.1 Effect of Wire Inductance in Digital Circuits545
10.6.2 Ramp Inputs and Linearity545
10.6.3 Response of an RC Circuit to Short Pulses and the Impulse Response550
10.6.4 Intuitive Method for the Impulse Response553
10.6.5 Clock Signals and Clock Fanout554
10.6.6 RC Response to Decaying Exponential558
10.6.7 Series RL Circuit with Sine-Wave Input558
10.7 Digital Memory561
10.7.1 The Concept of Digital State561
10.7.2 An Abstract Digital Memory Element562
10.7.3 Design of the Digital Memory Element563
10.7.4 A Static Memory Element567
10.8 Summary and Exercises568
CHAPTER 11 Energy and Power in Digital Circuits595
11.1 Power and Energy Relations for a Simple RC Circuit595
11.2 Average Power in an RC Circuit597
11.2.1 Energy Dissipated During Interval T1599
11.2.2 Energy Dissipated During Interval T2601
11.2.3 Total Energy Dissipated603
11.3 Power Dissipation in Logic Gates604
11.3.1 Static Power Dissipation604
11.3.2 Total Power Dissipation605
11.4 NMOS Logic611
11.5 CMOS Logic611
11.5.1 CMOS Logic Gate Design616
11.6 Summary and Exercises618
CHAPTER 12 Transients in Second-Order Circuits625
12.1 Undriven LC Circuit627
12.2 Undriven, Series RLC Circuit640
12.2.1 Under-Damped Dynamics644
12.2.2 Over-Damped Dynamics648
12.2.3 Critically-Damped Dynamics649
12.3 Stored Energy in Transient, Series RLC Circuit651
12.4 Undriven, Parallel RLC Circuit654
12.4.1 Under-Damped Dynamics654
12.4.2 Over-Damped Dynamics654
12.4.3 Critically-Damped Dynamics654
12.5 Driven, Series RLC Circuit654
12.5.1 Step Response657
12.5.2 Impulse Response661
12.6 Driven, Parallel RLC Circuit678
12.6.1 Step Response678
12.6.2 Impulse Response678
12.7 Intuitive Analysis of Second-Order Circuits678
12.8 Two-Capacitor or Two-Inductor Circuits684
12.9 State-Variable Method689
12.10 State-Space Analysis691
12.10.1 Numerical Solution691
12.11 Higher-Order Circuits691
12.12 Summary and Exercises692
CHAPTER 13 Sinusoidal Steady State: Impedance and Frequency Response703
13.1 Introduction703
13.2 Analysis Using Complex Exponential Drive706
13.2.1 Homogeneous Solution706
13.2.2 Particular Solution707
13.2.3 Complete Solution710
13.2.4 Sinusoidal Steady-State Response710
13.3 The Boxes: Impedance712
13.3.1 Example: Series RL Circuit718
13.3.2 Example: Another RC Circuit722
13.3.3 Example: RC Circuit with Two Capacitors724
13.3.4 Example: Analysis of Small Signal Amplifier with Capacitive Load729
13.4 Frequency Response: Magnitude and Phase versus Frequency731
13.4.1 Frequency Response of Capacitors, Inductors,and Resistors732
13.4.2 Intuitively Sketching the Frequency Response of RC and RL Circuits737
13.4.3 The Bode Plot: Sketching the Frequency Response of General Functions741
13.5 Filters742
13.5.1 Filter Design Example: Crossover Network744
13.5.2 Decoupling Amplifier Stages746
13.6 Time Domain versus Frequency Domain Analysis using Voltage-Divider Example751
13.6.1 Frequency Domain Analysis751
13.6.2 Time Domain Analysis754
13.6.3 Comparing Time Domain and Frequency Domain Analyses756
13.7 Power and Energy in an Impedance757
13.7.1 Arbitrary Impedance758
13.7.2 Pure Resistance760
13.7.3 Pure Reactance761
13.7.4 Example: Power in an RC Circuit763
13.8 Summary and Exercises765
CHAPTER 14 Sinusoidal Steady State: Resonance777
14.1 Parallel RLC, Sinusoidal Response777
14.1.1 Homogeneous Solution778
14.1.2 Particular Solution780
14.1.3 Total Solution for the Parallel RLC Circuit781
14.2 Frequency Response for Resonant Systems783
14.2.1 The Resonant Region of the Frequency Response792
14.3 Series RLC801
14.4 The Bode Plot for Resonant Functions808
14.5 Filter Examples808
14.5.1 Band-pass Filter809
14.5.2 Low-pass Filter810
14.5.3 High-pass Filter814
14.5.4 Notch Filter815
14.6 Stored Energy in a Resonant Circuit816
14.7 Summary and Exercises821
CHAPTER 15 The Operational Amplifier Abstraction837
15.1 Introduction837
15.1.1 Historical Perspective838
15.2 Device Properties of the Operational Amplifier839
15.2.1 The Op Amp Model839
15.3 Simple Op Amp Circuits842
15.3.1 The Non-Inverting Op Amp842
15.3.2 A Second Example: The Inverting Connection844
15.3.3 Sensitivity846
15.3.4 A Special Case: The Voltage Follower847
15.3.5 An Additional Constraint: v+ - v- ≈ 0848
15.4 Input and Output Resistances849
15.4.1 Output Resistance, Inverting Op Amp849
15.4.2 Input Resistance Inverting Connection851
15.4.3 Input and Output R For Non-Inverting Op Amp853
15.4.4 Generalization on Input Resistance855
15.4.5 Example: Op Amp Current Source855
15.5 Additional Examples857
15.5.1 Adder858
15.5.2 Subtracter858
15.6 Op Amp RC Circuits859
15.6.1 Op Amp Integrator859
15.6.2 Op Amp Differentiator862
15.6.3 An RC Active Filter863
15.6.4 The RC Active Filter—Impedance Analysis865
15.6.5 Sallen-Key Filter866
15.7 Op Amp in Saturation866
15.7.1 Op Amp Integrator in Saturation867
15.8 Positive Feedback869
15.8.1 RC Oscillator869
15.9 Two-Ports872
15.10 Summary and Exercises873
CHAPTER 16 Diodes905
16.1 Introduction905
16.2 Semiconductor Diode Characteristics905
16.3 Analysis of Diode Circuits908
16.3.1 Method of Assumed States908
16.4 Nonlinear Analysis with RL and RC912
16.4.1 Peak Detector912
16.4.2 Example: Clamping Circuit915
16.4.3 A Switched Power Supply using a Diode918
16.5 Additional Examples918
16.5.1 Piecewise Linear Example: Clipping Circuit918
16.5.2 Exponentiation Circuit918
16.5.3 Piecewise Linear Example: Limiter918
16.5.4 Example: Fidl-Wave Diode Bridge918
16.5.5 Incremental Example: Zener-Diode Regulator918
16.5.6 Incremental Example: Diode Attenuator918
16.6 Summary and Exercises919
APPENDIX A Maxwell's Equations and the Lumped Matter Discipline927
A.1 The Lumped Matter Discipline927
A.1.1 The First Constraint of the Lumped Matter Discipline927
A.1.2 The Second Constraint of the Lumped Matter Discipline930
A.1.3 The Third Constraint of the Lumped Matter Discipline932
A.1.4 The Lumped Matter Discipline Applied to Circuits933
A.2 Deriving Kirchhoff's Laws934
A.3 Deriving the Resistance of a Piece of Material936
APPENDIX B Trigonometric Functions and Identities941
B.l Negative Arguments941
B.2 Phase-Shifted Arguments942
B.3 Sum and Difference Arguments942
B.4 Products943
B.5 Half-Angle and Twice-Angle Arguments943
B.6 Squares943
B.7 Miscellaneous943
B.8 Taylor Series Expansions944
B.9 Relations to ejo944
APPENDIX C Complex Numbers947
C.1 Magnitude and Phase947
C.2 Polar Representation948
C.3 Addition and Subtraction949
C.4 Multiplication and Division949
C.5 Complex Conjugate950
C.6 Properties of ejo951
C.7 Rotation951
C.8 Complex Functions of Time952
C.9 Numerical Examples952
APPENDIX D Solving Simultaneous Linear Equations957
Answers to Selected Problems959
Figure Credits971
Index973
热门推荐
- 2574463.html
- 3331122.html
- 2932991.html
- 2716397.html
- 985009.html
- 1845880.html
- 3070506.html
- 1784487.html
- 2870135.html
- 528845.html
- http://www.ickdjs.cc/book_2551979.html
- http://www.ickdjs.cc/book_2626967.html
- http://www.ickdjs.cc/book_708708.html
- http://www.ickdjs.cc/book_695598.html
- http://www.ickdjs.cc/book_2508218.html
- http://www.ickdjs.cc/book_3631128.html
- http://www.ickdjs.cc/book_2573305.html
- http://www.ickdjs.cc/book_3095771.html
- http://www.ickdjs.cc/book_210348.html
- http://www.ickdjs.cc/book_2576274.html