图书介绍
计算物理学 原书第2版 英文版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- (荷)蒂森著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510032905
- 出版时间:2011
- 标注页数:620页
- 文件大小:49MB
- 文件页数:302页
- 主题词:计算物理学-英文
PDF下载
下载说明
计算物理学 原书第2版 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Physics and computational physics1
1.2 Classical mechanics and statistical mechanics1
1.3 Stochastic simulations4
1.4 Electrodynamics and hydrodynamics5
1.5 Quantum mechanics6
1.6 Relations between quantum mechanics and classical statistical physics7
1.7 Quantum molecular dynamics8
1.8 Quantum field theory9
1.9 About this book9
Exercises11
References13
2 Quantum scattering with a spherically symmetric potential14
2.1 Introduction14
2.2 A program for calculating cross sections18
2.3 Calculation of scattering cross sections25
Exercises27
References28
3 The variational method for the Schr?dinger equation29
3.1 Variational calculus29
3.2 Examples of variational calculations32
3.3 Solution of the generalised eigenvalue problem36
3.4 Perturbation theory and variational calculus37
Exercises39
References41
4 The Hartree-Fock method43
4.1 Introduction43
4.2 The Born-Oppenheimer approximation and the independent-particle method44
4.3 The helium atom46
4.4 Many-electron systems and the Slater determinant52
4.5 Self-consistency and exchange:Hartree-Fock theory54
4.6 Basis functions60
4.7 The structure of a Hartree-Fock computer program69
4.8 Integrals involving Gaussian functions73
4.9 Applications and results77
4.10 Improving upon the Hartree-Fock approximation78
Exercises80
References87
5 Density functional theory89
5.1 Introduction89
5.2 The local density approximation95
5.3 Exchange and correlation:a closer look97
5.4 Beyond DFT:one- and two-particle excitations101
5.5 A density functional program for the helium atom109
5.6 Applications and results114
Exercises116
References119
6 Solving the Schr?dinger equation in periodic solids122
6.1 Introduction:definitions123
6.2 Band structures and Bloch’s theorem124
6.3 Approximations126
6.4 Band structure methods and basis functions133
6.5 Augmented plane wave methods135
6.6 The linearised APW(LAPW)method141
6.7 The pseudopotential method144
6.8 Extracting information from band structures160
6.9 Some additional remarks162
6.10 Other band methods163
Exercises163
References167
7 Classical equilibrium statistical mechanics169
7.1 Basic theory169
7.2 Examples of statistical models;phase transitions176
7.3 Phase transitions184
7.4 Determination of averages in simulations192
Exercises194
References195
8 Molecular dynamics simulations197
8.1 Introduction197
8.2 Molecular dynamics at constant energy200
8.3 A molecular dynamics simulation program for argon208
8.4 Integration methods:symplectic integrators211
8.5 Molecular dynamics methods for different ensembles223
8.6 Molecular systems232
8.7 Long-range interactions241
8.8 Langevin dynamics simulation247
8.9 Dynamical quantities:nonequilibrium molecular dynamics251
Exercises253
References259
9 Quantum molecular dynamics263
9.1 Introduction263
9.2 The molecular dynamics method266
9.3 An example:quantum molecular dynamics for the hydrogen molecule272
9.4 Orthonormalisation;conjugate gradient and RM-DIIS techniques278
9.5 Implementation of the Car-Parrinello technique for pseudopotential DFT289
Exercises290
References293
10 The Monte Carlo method295
10.1 Introduction295
10.2 Monte Carlo integration296
10.3 Importance sampling through Markov chains299
10.4 Other ensembles310
10.5 Estimation of free energy and chemical potential316
10.6 Further applications and Monte Carlo methods319
10.7 The temperature of a finite system330
Exercises334
References335
11 Transfer matrix and diagonalisation of spin chains338
11.1 Introduction338
11.2 The one-dimensional Ising model and the transfer matrix339
11.3 Two-dimensional spin models343
11.4 More complicated models347
11.5 ’Exact’diagonalisation of quantum chains349
11.6 Quantum renormalisation in real space355
11.7 The density matrix renormalisation group method358
Exercises365
References370
12 Quantum Monte Carlo methods372
12.1 Introduction372
12.2 The variational Monte Carlo method373
12.3 Diffusion Monte Carlo387
12.4 Path-integral Monte Carlo398
12.5 Quantum Monte Carlo on a lattice410
12.6 The Monte Carlo transfer matrix method414
Exercises417
References421
13 The finite element method for partial differential equations423
13.1 Introduction423
13.2 The Poisson equation424
13.3 Linear elasticity429
13.4 Error estimators434
13.5 Local refinement436
13.6 Dynamical finite element method439
13.7 Concurrent coupling of length scales:FEM and MD440
Exercises445
References446
14 The lattice Boltzmann method for fluid dynamics448
14.1 Introduction448
14.2 Derivation of the Navier-Stokes equations449
14.3 The lattice Boltzmann model455
14.4 Additional remarks458
14.5 Derivation of the Navier-Stokes equation from the lattice Boltzmann model460
Exercises463
References464
15 Computational methods for lattice field theories466
15.1 Introduction466
15.2 Quantum field theory467
15.3 Interacting fields and renormalisation473
15.4 Algorithms for lattice field theories477
15.5 Reducing critical slowing down491
15.6 Comparison of algorithms for scalar field theory509
15.7 Gauge field theories510
Exercises532
References536
16 High performance computing and parallelism540
16.1 Introduction540
16.2 Pipelining541
16.3 Parallelism545
16.4 Parallel algorithms for molecular dynamics552
References556
Appendix A Numerical methods557
A1 About numerical methods557
A2 Iterative procedures for special functions558
A3 Finding the root of a function559
A4 Finding the optimum of a function560
A5 Discretisation565
A6 Numerical quadratures566
A7 Differential equations568
A8 Linear algebra problems590
A9 The fast Fourier transform598
Exercises601
References603
Appendix B Random number generators605
B1 Random numbers and pseudo-random numbers605
B2 Random number generators and properties of pseudo-random numbers606
B3 Nonuniform random number generators609
Exercises611
References612
Index613
热门推荐
- 913482.html
- 2800999.html
- 230750.html
- 2823196.html
- 1752015.html
- 989173.html
- 715803.html
- 693806.html
- 665709.html
- 2721017.html
- http://www.ickdjs.cc/book_1755270.html
- http://www.ickdjs.cc/book_1622677.html
- http://www.ickdjs.cc/book_1596673.html
- http://www.ickdjs.cc/book_3437406.html
- http://www.ickdjs.cc/book_262508.html
- http://www.ickdjs.cc/book_401273.html
- http://www.ickdjs.cc/book_1601353.html
- http://www.ickdjs.cc/book_3168920.html
- http://www.ickdjs.cc/book_3060796.html
- http://www.ickdjs.cc/book_278364.html