图书介绍
3维超大规模集成电路 2.5集成方案【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- 邓仰东,(美)马利著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302211655
- 出版时间:2010
- 标注页数:194页
- 文件大小:22MB
- 文件页数:209页
- 主题词:超大规模集成电路-英文
PDF下载
下载说明
3维超大规模集成电路 2.5集成方案PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 2.5-D Integration5
1.2 Enabling Technologies8
1.2.1 Fabrication Technology8
1.2.2 Testing Methodology and Fault Tolerance Technique9
1.2.3 Design Technology10
1.3 Objectives and Book Organization13
References16
2 A Cost Comparison of VLSI Integration Schemes21
2.1 Non-Monolithic Integration Schemes22
2.1.1 Multiple-Reticle Wafer23
2.1.2 Multiple Chip Module(MCM)23
2.1.3 Three-Dimensional(3-D)integration24
2.2 Yield Analysis of Different VLSI Integration Approaches26
2.2.1 Monolithic Soc28
2.2.2 Multiple-Reticle Wafer(MRW)28
2.2.3 Three-Dimensional(3-D)Integration30
2.2.4 2.5-D System Integration31
2.2.5 Multi-Chip Module34
2.2.6 Summing Up35
2.3 Observations37
References38
3 Design Case Studies42
3.1 Crossbar43
3.2 A 2.5-D Rambus DRAM Architecture46
3.2.1 Tackle the Long Bus Wire46
3.2 2 Serialized Channel in the 3rd Dimension48
3.3 A 2.5-D Redesign of PipeRench50
3.3.1 The 2.5-D Implementation52
3.3.2 Simulation Results54
3.4 A 2.5-D Integrated Microprocessor System56
3.4.1 A 2.5-D Integrated Microprocessor System57
3.4.2 An Analytical Performance Model62
3.4.3 Detailed Performance Simulation for Reduced Memory Latency66
3.5 Observations69
References71
4 An Automatic 2.5-D Layout Design Flow74
4.1 A 2.5-D Layout Design Framework75
4.1.1 2.5-D Floorplanning77
4.1.2 2.5-D Placement78
4.1.3 2.5-D Global Routing78
4.2 Observations81
References81
5 Floorplanning for 2.5-D Integration83
5.1 Floorplan Level Evaluation—Category 2 Circuits87
5.1.1 Technique87
5.1.2 Results89
5.2 Floorplan Level Evaluation—Category 3 Circuits91
5.2.1 Technique91
5.2.2 Results92
5.3 Thermal driven floorplanning93
5.3.1 Chip Level Thermal Modeling and Analysis for 2.5-D Floorplanning95
5.3.2 Coupled Temperature and Leakage Estimation99
5.3.3 2.5-D Thermal Driven Floorplanning Techniques105
5.3.4 Experimental results107
5.4 Observations111
References113
6 Placement for 2.5-D Integration117
6.1 Pure Standard Cell Designs119
6.1.1 Placement Techniques120
6.1.2 Benchmarks and Layout Model123
6.1.3 Evaluation of Vertical Partitioning Strategies125
6.1.4 Wire length scaling126
6.1.5 Wire length reduction129
6.1.6 Wire Length vs.Inter-Chip Contact Pitch133
6.2 Mixed Macro and Standard Cell Designs134
6.2.1 Placement Techniques136
6.2.2 Results and Analysis138
6.3 Observations140
References142
7 A Road map of 2.5-D Integration144
7.1 Stacked Memory145
7.2 DRAM Integration for Bandwidth-Demanding Applications147
7.3 Hybrid System Integration151
7.4 Extremely High Performance Systems155
7.4.1 Highly Integrated Image Sensor System155
7.4.2 Radar-in-Cube158
References160
8 Conclusion and Future Work164
8.1 Main Contributions and Conclusions165
8.2 Future Work168
8.2.1 Fabrication Technology for 2.5-D Systems169
8.2.2 Testing Techniques for 2.5-D Integration171
8.2.3 Design Technology for 2.5-D Integration173
References186
Index188
Figure 1.1 Actual chip complexity increases faster than Moore's law2
Figure 1.2 An imaginary 2.5-D system(see colour plate)5
Figure 2.1 Total consumed silicon area of multiple-reticle wafer30
Figure 2.2 Silicon area of the 2.5-D implementation with 4 slices of chips33
Figure 2.3 Silicon area of the 2.5-D implementation34
Figure 2.4 Silicon area of the MCM implementation35
Figure 2.5 Silicon area comparison of different integration schemes36
Figure 2.6 System planning for future VLSI systems38
Figure 3.1 Stick diagram of a monolithic crossbar(see colour plate)44
Figure 3.2 Stick diagram of a 2.5-D crossbar(see colour plate)45
Figure 3.3 Rambus DRAM46
Figure 3.4 2.5-D Rambus DRAM48
Figure 3.5 RDRAM memory system49
Figure 3.6 3-D Rambus DRAM:4-channel configuration50
Figure 3.7 Original monolithic implementation of PipeRench51
Figure 3.8 Critical path of PipeRench system52
Figure 3.9 The 2.5-D re-design of PipeRench(see colourplate)53
Figure 3.10 Alpha 21364 floorplan and memory bus placement58
Figure 3.11 A 2.5-D stacked microprocessor and DRAM60
Figure 3.12 A diagram of computer system60
Figure 3.13 CPI calculation63
Figure 3.14 CPI with regard to main memory latency and L2 cache miss rate(see colour plate)65
Figure 3.15 IPC Speedup by reduced memory latency68
Figure 4.1 A 2.5-D layout synthesis framework76
Figure 4.2 2.5-D routing graph79
Figure 5.1 2.5-D floorplanning87
Figure 5.2 A floorplan example89
Figure 5.3 Insert a 0-weight cell91
Figure 5.4 2.5-D thermal-driven floorplanning flow95
Figure 5.5 A 3-D IC with two stacked chip layers in a package96
Figure 5.6 Thermal interactions between a region of the top transistor layer to all other regions on both transistor layers(not all interactions are drawn)98
Figure 5.7 Thermal simulation of a set of floorplans with varying total area and aspect ratio(only one stacked layer is shown for each case)99
Figure 5.8 Modeling the temperature dependency of the leakage power using a linear model101
Figure 5.9 Leakage power distribution is confined within the placed circuit blocks103
Figure 5.10 The distribution of wire length and temperature gradient109
Figure 5.11 Temperature snapshots of the thermal driven floorplanning with Benchmark AMI49.Both the maximum temperature and the temperature gradient are reduced during the optimization(see colour plate)111
Figure 6.1 2.5-D placement problem(see colour plate)119
Figure 6.2 2.5-D placement process121
Figure 6.3 Wire length reductions vs.vertical partitioning126
Figure 6.4 Monolithic and 2.5-D placements for the same design127
Figure 6.5 A profile of wire length reduction128
Figure 6.6 Wire length reductions of standard cell placement130
Figure 6.7 Wire length distribution of one design132
Figure 6.8 Interconnect power comparison—2-D and 2.5-D solutions133
Figure 6.9 Wire length vs.pitch of inter-chip contact pitch134
Figure 6.10 Block splitting during mixed placement138
Figure 6.11 Wire length reductions of mixed placement140
Figure 7.1 Road map for the development of 2.5-D ICs145
Figure 7.2 Flash memory capacity in cellular phones(adapted from)146
Figure 7.3 Peak memory bandwidths of major NVidia GPUs148
Figure 7.4 Intel's wire-bonded stacked Chip Scale Packaged flash memory(courtesy of Intel Corporation)148
Figure 7.5 Normalized clock rate vs.peak memory bandwidth of NVidia149
Figure 7.6 Tile-based multiprocessor architecture151
Figure 7.7 A multi-chip wireless handset solution(courtesy of Texas Instruments)152
Figure 7.8 Passive components in package155
Figure 7.9 An image sensor system digram156
Figure 7.10 A 2.5-D camera/IR sensor system158
Figure 7.11 Computational demands for military radar systems(adapted from)159
Figure 7.12 Block diagram of a radar system159
Figure 7.13 2.5-D implementation of a radar system160
Figure 8.1 Area power I/O for 2.5-D integration(see colour plate)168
Figure 8.2 MEMS based inter-chip contact(see colour plate)170
Figure 8.3 Design flow for 2.5-D ICs184
Table 1.1 Design variables involved in designing a 2.5-D system11
Table 2.1 Wafer bonding based 3-D integration technologies25
Table 2.2 Values for the major parameters of our cost model28
Table 3.1 SPICE simulation on the critical path55
Table 3.2 Configuration of target microprocessor58
Table 3.3 SPEC2000 benchmark programs under study67
Table 3.4 IPC improvement by Reduced Memory Latency68
Table 5.1 2-D and 2.5-D floorplans for Category 2 designs90
Table 5.2 2-D and 2.5-D floorplans for Category 3 designs93
Table 5.3 2.5-D thermal-driven floorplans with different weighting factors for thermal cost108
Table 5.4 3-D floorplans with and without thermal concern110
Table 6.1 Placement benchmarks123
Table 6.2 Worst-case wire length reduction for nets with large fan-out129
Table 6.3 Wire length comparison of standard cell placements131
Table 6.4 Mixed Layout Benchmarks135
Table 6.5 Wire length characteristics of mixed placement139
热门推荐
- 1441675.html
- 401253.html
- 3109445.html
- 366308.html
- 334242.html
- 1476417.html
- 55167.html
- 3428357.html
- 95041.html
- 2902657.html
- http://www.ickdjs.cc/book_1851034.html
- http://www.ickdjs.cc/book_3469668.html
- http://www.ickdjs.cc/book_3656915.html
- http://www.ickdjs.cc/book_2614877.html
- http://www.ickdjs.cc/book_3339955.html
- http://www.ickdjs.cc/book_3459352.html
- http://www.ickdjs.cc/book_2777926.html
- http://www.ickdjs.cc/book_499742.html
- http://www.ickdjs.cc/book_562179.html
- http://www.ickdjs.cc/book_1335659.html