图书介绍

矩阵计算与方程求根 第2版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

矩阵计算与方程求根 第2版
  • 曹志浩等编 著
  • 出版社: 北京:高等教育出版社
  • ISBN:130100327
  • 出版时间:1979
  • 标注页数:284页
  • 文件大小:6MB
  • 文件页数:290页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

矩阵计算与方程求根 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

预备知识 极限和范数1

1 向量和矩阵的极限1

2 向量和矩阵的范数2

2.1 向量范数2

2.2 矩阵范数5

3 极限定理10

第一章 线性代数方程组求解13

1 线代数方程组的直接解法13

1.1 Gauss消去法13

1.2 矩阵的三角分解17

1.3 选主元21

1.4 线性代数方程组的性态,浮点运算的舍入误差分析27

1.5 消去法的浮点舍入误差分析34

1.6 迭代改善42

2 线代数方程组的迭代解法47

2.1 Jacobi迭代法和Gauss-Seidel迭代法47

2.2 超松驰迭代法62

2.3 相容次序,性质A和最佳松弛因子的决定64

2.4 块超松弛迭代法83

2.5 共轭斜量法86

3 线性最小二乘法93

3.1 问题的引入,预备知识93

3.2 解的存在性,唯一性96

3.3 正交化方法99

第二章 代数特征值问题108

1 特征值的敏感性108

1.1 特征值的扰动110

1.2 条件数119

2 乘幂法和反乘幂法123

2.1 乘幂法123

2.2 加速技术131

2.3 收缩133

2.4 反幂法136

3 对称矩阵的子空间迭代法141

4 对称矩阵的Jacobi方法148

4.1 Jacobi算法148

4.2 Jacobi算法的收敛性151

4.3 实用Jacobi算法154

5 对称矩阵的Givens-Householder方法155

5.1 三对角化过程156

5.2 用二分法求特征值159

5.3 特征向量的计算169

6 QR方法177

6.1 QR算法及收敛性178

6.2 带原点位移的QR算法184

6.3 双重步QR算法189

7 矩阵广义特征值问题194

7.1 化到标准特征值问题194

7.2 行列式查找法196

第三章 方程的求根204

1 引言204

2 单点迭代209

2.1 简单迭代法209

2.2 高阶迭代215

2.3 单点迭代函数的构造219

3 Newton迭代法223

3.1 Newton迭代法收敛收定理224

3.2 Newton迭代法的修改229

3.3 m重根的处理231

4 有记忆的单点迭代法--插值法233

4.1 插值理论和内插迭代函数的构造233

4.2 弦割法(一次插值法)236

4.3 单点弦割法241

4.4 抛物线法(Muller法)244

5 多点迭代函数250

6 多项式方程求根253

6.1 Newton法求多项式方程的根253

6.2 Bernoulli方法255

6.3 林士谔-Bairstow方法264

习题274

预备知识274

第一章274

第二章279

第三章283

热门推荐