图书介绍

The Theory of Potential and Spherical Harmonics【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

The Theory of Potential and Spherical Harmonics
  • Wolfgang J.Sternberg and Turner L.Smith 著
  • 出版社: The University of Toronto Press
  • ISBN:
  • 出版时间:1946
  • 标注页数:312页
  • 文件大小:62MB
  • 文件页数:322页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

The Theory of Potential and Spherical HarmonicsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

INTRODUCTION1

Vectors and Scalars1

Ⅰ.THE NEWTONIAN LAW OF GRAVITY7

1.The Newtonian law7

2.The force field9

3.Examples and exercises11

4.Force fields.Lines of force.Vector fields.Velocity fields15

Ⅱ.CONCEPT OF POTENTIAL19

1.Work.potential.Gradient of a scalar19

2.Newtonian potential of a body24

3.Logarithmic potential26

4.Newtonian potential of surface distributions and of double layers28

5.The Laplace equation31

6.Behaviour of the potential at infinity33

7.Harmonic functions.Regularity in the finite regions and at infinity39

8.Equipotential surfaces and lines of force42

9.Examples and problems43

Ⅲ.THE INTEGRAL THEOREMS OF POTENTIAL THEORY48

1.Gauss's theorem or divergence theorem48

2.Divergence.Solenoidal fields52

3.The flux of force through a closed surface56

4.Stokes' theorem58

5.Curl60

6.Green's formulas63

7.Representation of a harmonic function as a potential67

8.Gauss's mean value theorem74

Ⅳ.ANALYTIC CHARACTER OF THE POTENTIAL.SPHERICAL HARMONICS77

1.Analytic character of the potential77

2.Expansion of 1/r in spherical harmonics.Legendre polynomials83

3.Expansion of the Newtonian potential92

4.Derivation of the spherical harmonics in rectangular coordinates from Laplace's equation95

5.Surface spherical harmonics.Their differential equation.Associated functions97

6.Orthogonality102

7.The addition theorem for spherical harmonics109

8.Expansion of the potentials at infinity115

9.Exercises concerning Legendre functions123

Ⅴ.BEHAVIOUR OF THE POTENTIAL AT POINTS OF THE MASS126

1.Auxiliary considerations126

2.Continuity of the potential of a body and of its first derivatives130

3.Poisson's equation132

4.Continuity of potential of surface distribution135

5.Discontinuity of potential of a double layer136

6.Discontinuity of normal derivative at a surface distribution140

7.Normal derivative of potential of a double layer145

8.Analogous theorems for logarithmic potential153

9.Dirichlet's characteristic properties of potential156

10.Applications159

Ⅵ.RELATION OF POTENTIAL TO THEORY OF FUNCTIONS167

1.The conjugate potential167

2.Expansion in Cartesian and polar coordinates173

3.Converse of the ideas in Art.1175

4.Invariance of potential under conformal mapping177

Ⅶ.THE BOUNDARY VALUE PROBLEMS OF POTENTIAL THEORY180

1.Statement of the problems180

2.Uniqueness theorems183

3.The exterior problems185

4.The Dirichlet principle.Direct methods of calculus of variations187

Ⅷ.THE POISSON INTEGRAL IN THE PLANE193

1.Solution of the Dirichlet problem for the circle193

2.Expansion in the circle196

3.Expansion on the circumference of the circle199

4.Expansion of arbitrary functions in Fourier series.Bessel's and Schwarz's inequalities201

5.Expansion in a circular ring209

6.The equipotentials are analytic curves214

7.Harnack's theorems216

8.Harmonic continuation220

9.Green's function in the plane224

10.Green's function for the circle231

11.Green's function of the second kind.Characteristic function233

12.Conformal mapping and the Green's function235

Ⅸ.THE POISSON INTEGRAL IN SPACE245

1.Solution of the first boundary value problem for the sphere.The Harnack theorems for space245

2.Green's function in space247

3.Expansion of a harmonic function in spherical harmonics250

4.Expansion of an arbitrary function in surface spherical harmonics254

5.Expansion in Legendre polynomials257

Ⅹ.THE FREDHOLM THEORY OF INTEGRAL EQUATIONS259

1.The problem of integral equations259

2.The first theorem of Fredholm261

3.The minor determinants of D(λ)267

4.The second theorem of Fredholm270

5.The third theorem of Fredholm276

6.The iterated kernels280

7.Proof of Hadamard's theorem281

8.Kernels which are not bounded283

Ⅺ.GENERAL SOLUTION OF THE BOUNDARY VALUE PROBLEMS287

1.Reduction to integral equations287

2.The existence theorems291

3.The first boundary value problem for the exterior295

4.Boundedness of the third iterated kernel305

INDEX311

热门推荐