图书介绍
物理学家用的数学方法 第6版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- (美)韦伯(Weber.H.J.),(英)阿夫肯(Arfken,G.B.)著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7506273063
- 出版时间:2006
- 标注页数:1186页
- 文件大小:115MB
- 文件页数:1198页
- 主题词:物理学-数学方法-高等学校-教材-英文
PDF下载
下载说明
物理学家用的数学方法 第6版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Vector Analysis1
1.1 Definitions,Elementary Approach1
1.2 Rotation ofthe Coordinate Axes7
1.3 Scalar or Dot Product12
1.4 Vector or Cross Product18
1.5 Triple Scalar Product,Triple Vector Product25
1.6 Gradient,?32
1.7 Divergence,?38
1.8 Curl,?×43
1.9 SuccessiveApplications of?49
1.10 VectorIntegration54
1.11 Gauss'Theorem60
1.12 Stokes'Theorem64
1.13 Potential Theory68
1.14 Gauss'Law, Poisson's Equation79
1.15 Dirac Delta Function83
1.16 Helmholtz's Theorem95
Additional Readings101
2 Vector Analysis in Curved Coordinates and Tensors103
2.1 Orthogonal Coordinates in R3103
2.2 Differential Vector Operators110
2.3 Special Coordinate Systems:Introduction114
2.4 Circular Cylinder Coordinates115
2.5 Spherical Polar Coordinates123
2.6 Tensor Analysis133
2.7 Contraction,Direct Product139
2.8 Quotient Rule141
2.9 Pseudotensors,Dual Tensors142
2.10 General Tensors151
2.11 Tensor Derivative Operators160
Additional Readings163
3 Determinants and Matrices165
3.1 Determinants165
3.2 Matrices176
3.3 Orthogonal Matrices195
3.4 Hermitian Matrices,Unitary Matrices208
3.5 Diagonalization of Matrices215
3.6 Normal Matrices231
Additional Readings239
4 Group Theory241
4.1 Introduction to Group Theory241
4.2 Generators of Continuous Groups246
4.3 Orbital Angular Momentum261
4.4 Angular Momentum Coupling266
4.5 Homogeneous Lorentz Group278
4.6 Lorentz Covariance ofMaxwell's Equations283
4.7 Discrete Groups291
4.8 Differential Forms304
Additional Readings319
5 Infinite Series321
5.1 Fundamental Concepts321
5.2 Convergence Tests325
5.3 Alternating Series339
5.4 Algebra ofSeries342
5.5 Series ofFunctions348
5.6 Taylor's Expansion352
5.7 Power Series363
5.8 Elliptic Integrals370
5.9 Bernoulli Numbers,Euler-Maclaurin Formula376
5.10 Asymptotic Series389
5.11 Infinite Products396
Additional Readings401
6 Functions of a Complex Variable I Analytic Properties,Mapping403
6.1 Complex Algebra404
6.2 Cauchy-Riemann Conditions413
6.3 Cauchy's Integral Theorem418
6.4 Cauchy's Integral Formula425
6.5 Laurent Expansion430
6.6 Singularities438
6.7 Mapping443
6.8 Conformal Mapping451
Additional Readings453
7 Functions of a Complex Variable II455
7.1 Calculus of Residues455
7.2 Dispersion Relations482
7.3 Method of Steepest Descents489
Additional Readings497
8 The Gamma Function(Factorial Function)499
8.1 Definitions,Simple Properties499
8.2 Digamma and Polygamma Functions510
8.3 Stirling's Series516
8.4 The Beta Function520
8.5 Incomplete Gamma Function527
Additional Readings533
9 Differential Equations535
9.1 Partial Differential Equations535
9.2 First-Order Differential Equations543
9.3 Separation of Variables554
9.4 Singular Points562
9.5 Series Solutions—Frobenius'Method565
9.6 A Second Solution578
9.7 Nonhomogeneous Equation—Green's Function592
9.8 Heat Flow,or Diffusion,PDE611
Additional Readings618
10 Sturm-Liouville Theory—Orthogonal Functions621
10.1 Self-Adjoint ODEs622
10.2 Hermitian Operators634
10.3 Gram-Schmidt Orthogonalization642
10.4 Completehess of Eigenfunctions649
10.5 Green's Function—Eigenfunction Expansion662
Additional Readings674
11 Bessel Functions675
11.1 Bessel Functions of the First Kind,Jv(x)675
11.2 Orthogonality694
11.3 Neumann Functions699
11.4 Hankel Functions707
11.5 Modified Bessel Functions,Iv(x)and Kv(x)713
11.6 Asymptotic Expansions719
11.7 Spherical Bessel Functions725
Additional Readings739
12 Legendre Functions741
12.1 Generating Function741
12.2 Recurrence Relations749
12.3 Orthogonality756
12.4 Alternate Definitions767
12.5 Associated Legendre Functions771
12.6 Spherical Harmonics786
12.7 Orbital Angular Momentum Operators793
12.8 Addition Theoremfor Spherical Harmonics797
12.9 Integrals of Three Y's803
12.10 Legendre Functions ofthe SecondKind806
12.11 Vector Spherical Harmonics813
Additional Readings816
13 More Special Functions817
13.1Hermite Functions817
13.2 Laguerre Functions837
13.3 Chebyshev Polynomials848
13.4 Hypergeometric Functions859
13.5 Confluent Hypergeometric Functions863
13.6 Mathieu Functions869
Additional Readings879
14 Fourier Series881
14.1 General Properties881
142 Advantages,Uses of Fourier Series888
14.3 Applications of Fourier Series892
14.4 Properties of Fourier Series903
14.5 Gibbs Phenomenon910
14.6 Discrete Fourier Transform914
14.7 Fourier Expansions of Mathieu Functions919
Additional Readings929
15 Integral Transforms931
15.1 Integral Transforms931
15.2 Development of the Fourier Integral936
15.3 Fourier Transforms—Inversion Theorem938
15.4 Fourier Transform of Derivatives946
15.5 Convolution Theorem951
15.6 Momentum Representation955
15.7 Transfer Functions961
15.8 Laplace Transforms965
15.9 Laplace Transform of Derivatives971
15.10 Other Properties979
15.11 Convolution(Faltungs)Theorem990
15.12 Inverse Laplace Transform994
Additional Readings1003
16 Integral Equations1005
16.1 Introduction1005
16.2 Integral Transforms,Generating Functions1012
16.3 Neumann Series,Separable(Degenerate)Kernels1018
16.4 Hilbert-Schmidt Theory1029
Additional Readings1036
17 Calculus of Variations1037
17.1 A Dependent and an Independent Variable1038
17.2 Applications of the Euler Equation1044
17.3 Several Dependent Variables1052
17.4 Several Independent Variables1056
17.5 Several Dependent and Independent Variables1058
17.6 Lagrangian Multipliers1060
17.7 Variation with Constraints1065
17.8 Rayleigh-Ritz Variational Technique1072
Additional Readings1076
18 Nonlinear Methods and Chaos1079
18.1 Introduction1079
18.2 The Logistic Map1080
18.3 Sensitivity to Initial Conditions and Parameters1085
18.4 NonlinearDifferentialEquations1088
Additional Readings1107
19 Probability1109
19.1 Definitions,Simple Properties1109
19.2 Random Variables1116
19.3 Binomial Distribution1128
19.4 Poisson Distribution1130
19.5 Gauss'Normal Distribution1134
19.6 Statistics1138
Additional Readings1150
General References1150
Index1153
热门推荐
- 494421.html
- 1410912.html
- 817805.html
- 2609200.html
- 1143254.html
- 345755.html
- 2734945.html
- 3327706.html
- 1718946.html
- 2977753.html
- http://www.ickdjs.cc/book_2486863.html
- http://www.ickdjs.cc/book_3600329.html
- http://www.ickdjs.cc/book_3886901.html
- http://www.ickdjs.cc/book_1455529.html
- http://www.ickdjs.cc/book_289684.html
- http://www.ickdjs.cc/book_2295493.html
- http://www.ickdjs.cc/book_1617560.html
- http://www.ickdjs.cc/book_3298532.html
- http://www.ickdjs.cc/book_2972669.html
- http://www.ickdjs.cc/book_3090259.html