图书介绍

全国普通高等医学院校药学类专业十三五规划教材 高等数学【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

全国普通高等医学院校药学类专业十三五规划教材 高等数学
  • 艾国平;李宗学编 著
  • 出版社: 北京:中国医药科技出版社
  • ISBN:9787506778947
  • 出版时间:2016
  • 标注页数:295页
  • 文件大小:37MB
  • 文件页数:311页
  • 主题词:高等数学-医学院校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

全国普通高等医学院校药学类专业十三五规划教材 高等数学PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 函数与极限1

第一节 函数1

一、函数的概念1

二、反函数4

三、函数的性质5

四、基本初等函数6

五、复合函数8

六、初等函数9

练习题1-19

第二节 极限10

一、数列的极限10

二、函数的极限11

三、无穷小与无穷大13

练习题1-214

第三节 极限的运算15

一、极限的运算法则15

二、两个重要极限18

三、无穷小的比较23

练习题1-325

第四节 函数的连续性26

一、函数的连续性与间断点26

二、初等函数的连续性29

三、闭区间上连续函数的性质31

练习题1-432

总练习题一33

第二章 导数与微分35

第一节 导数35

一、导数的定义35

二、导数的几何意义38

三、函数的可导与连续的关系38

练习题2-139

第二节 函数的求导方法40

一、导数公式40

二、函数四则运算的求导法则41

三、反函数与复合函数的求导法则42

四、隐函数与参数方程的导数45

五、高阶导数48

练习题2-250

第三节 函数的微分51

一、微分的概念51

二、微分的计算53

三、微分的应用55

练习题2-356

第四节 中值定理与洛必达法则56

一、中值定理57

二、洛必达法则59

练习题2-462

第五节 函数性态的研究63

一、函数的单调性与曲线的凹凸性63

二、函数的极值与最大值、最小值66

练习题2-569

第六节 泰勒公式70

练习题2-672

总练习题二72

第三章 不定积分75

第一节 不定积分的概念与性质75

一、原函数与不定积分75

二、基本积分公式77

三、不定积分的性质78

练习题3-180

第二节 换元积分法81

一、第一类换元积分法81

二、第二类换元积分法85

练习题3-290

第三节 分部积分法92

练习题3-394

第四节 有理函数的积分与三角函数有理式的积分96

一、有理函数的积分96

二、三角函数有理式的积分98

练习题3-499

总练习题三100

第四章 定积分及其应用102

第一节 定积分的概念与性质102

一、定积分的概念与几何意义104

二、定积分的性质105

练习题4-1108

第二节 定积分的计算108

一、微积分基本公式108

二、定积分的换元积分法110

三、定积分的分部积分法113

练习题4-2114

第三节 反常积分和Γ函数115

一、反常积分115

二、Γ函数118

练习题4-3119

第四节 定积分的应用119

一、平面图形的面积120

二、体积122

三、平面曲线的弧长125

四、定积分在医药学上的应用125

练习题4-4127

总练习题四128

第五章 微分方程130

第一节 微分方程的基本概念130

练习题5-1133

第二节 一阶微分方程的解法134

一、可分离变量的微分方程134

二、齐次方程138

三、一阶线性微分方程140

练习题5-2146

第三节 可降阶的高阶微分方程147

一、y(n)=f(x)型微分方程147

二、y″=f(x,y′)型微分方程148

三、y″=f(y,y′)型微分方程150

练习题5-3155

第四节 二阶常系数线性微分方程155

一、二阶线性微分方程解的结构155

二、二阶常系数齐次线性微分方程157

三、二阶常系数非齐次线性微分方程160

练习题5-4166

第五节 微分方程的应用166

练习题5-5170

总练习题五171

第六章 空间解析几何172

第一节 空间直角坐标系与向量代数172

一、空间直角坐标系172

二、空间两点间的距离173

三、向量代数174

练习题6-1183

第二节 空间曲面与曲线184

一、空间曲面及其方程184

二、空间曲线及其方程189

练习题6-2193

第三节 空间平面与直线193

一、平面及其方程193

二、空间直线及其方程196

练习题6-3200

总练习题六201

第七章 多元函数微分法203

第一节 多元函数的基本概念203

一、平面点集及区域203

二、二元函数204

练习题7-1208

第二节 偏导数208

一、二元偏导数208

二、高阶偏导数211

练习题7-2212

第三节 全微分212

一、全微分的概念与可微的条件213

二、全微分在近似计算中的应用216

练习题7-3217

第四节 多元复合函数和隐函数的求导218

一、多元复合函数的求导218

二、多元隐函数的微分法221

练习题7-4222

第五节 多元函数的极值及其求法223

一、二元函数的极值223

二、最大值与最小值225

三、条件极值227

练习题7-5229

总练习题七229

第八章 多元函数积分法231

第一节 二重积分231

一、二重积分的概念231

二、二重积分的性质233

三、二重积分的计算233

四、累次积分调换次序235

练习题8-1235

第二节 三重积分236

一、三重积分的概念236

二、三重积分的计算237

练习题8-2238

第三节 二重积分的应用238

一、二重积分的几何应用238

二、二重积分的物理应用240

练习题8-3241

第四节 曲线积分242

一、对弧长的曲线积分242

二、对坐标曲线积分245

练习题8-4247

第五节 格林公式及其应用248

一、格林公式248

二、曲线积分与路径无关的条件249

练习题8-5251

总练习题八252

附录 MATLAB在高等数学中的应用255

练习题参考答案276

参考文献295

热门推荐