图书介绍
智能材料在结构健康监测控制及生物力学中的应用 英文版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- 苏志强,杨耀文;苏瑞喜巴拉编 著
- 出版社: 杭州:浙江大学出版社
- ISBN:9787308082662
- 出版时间:2012
- 标注页数:618页
- 文件大小:55MB
- 文件页数:636页
- 主题词:智能材料-应用-研究生-教材-英文
PDF下载
下载说明
智能材料在结构健康监测控制及生物力学中的应用 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
1.1 Overview1
1.2 Concept of Smart Systems/Structures for SHM5
1.3 Smart Materials6
1.4 Piezoelectricity and Piezoelectric Materials7
References14
2 Electro-Mechanical Impedance Technique17
2.1 Introduction17
2.2 Mechanical Impedance of Structures18
2.3 Impedance Modeling for EMI Technique21
2.4 Mechanical Impedance of PZT Patches27
2.5 PZT-Structure Interaction29
2.6 Practical Aspects of EMI Technique35
2.7 Signal Processing Techniques and Conventional Damage Quantification39
2.8 Major Technological Developments During the Last One and a Half Decades41
2.9 Advantages of EMI Technique46
2.10 Limitations of EMI Technique47
References47
Exercise 2.150
3 Impedance Models for Structural Health Monitoring Using Piezo-Impedance Transducers53
3.1 Introduction53
3.2 Early PZT-Structure Interaction Models53
3.3 2D Effective Mechanical Impedance56
3.4 2D Formulation Based on Effective Impedance58
3.5 Experimental Verification62
3.5.1 Details of Experimental Set-up62
3.5.2 Determination of Structural EDP Impedance by FEM63
3.5.3 Modeling of Structural Damping67
3.5.4 Wavelength Analysis and Convergence Test67
3.5.5 Comparison between Theoretical and Experimental Signatures69
3.6 Refining the 2D Impedance Model70
3.7 3D Interaction of PZT Transducer with Host Structure77
3.7.1 Necessity of3D Formulation77
3.7.2 Issues in ID and 2D Impedance Models77
3.7.3 Issues to Consider in 3D Impedance Model78
3.8 3D Model in Presence of Thick Adhesive Bonding81
3.8.1 Impedance Formulation81
3.8.2 Stress-Strain Relationship of PZT Patch Subjected to 3D Loading85
3.8.3 3D Differential Equations86
3.8.4 Solution to 3D Differential Equations87
3.8.5 Active Part of Solution89
3.8.6 Stress-Strain Relationships in Presence of Electric Fields90
3.8.7 Formulation of Structural Responses and Impedances91
3.8.8 EM Admittance Formulation for M-Functioning PZT Patches96
3.8.9 Modifications of Linear Impedance Formulations for Case Studies98
3.8.10 Results and Discussions104
3.9 FE Modeling of EMI Technique Using Coupled Field Element106
3.9.1 Review on FE Modeling of PZT-Structure Interaction106
3.9.2 Inclusion of Induced Strain Actuator in FE Model108
3.9.3 Comparison of FE Model with Existing Impedance-Based Analytical Model and Experimental Tests109
3.9.4 FE Modeling of PZT-Structure Interaction115
References124
Exercise 3.1126
Exercise 3.2127
Exercise 3.3128
4 Damage Quantification Using EMI Technique129
4.1 Extraction of Structural Mechanical Impedance from Admittance Signatures129
4.2 System Parameter Identification from Extracted Impedance Spectra132
4.3 Damage Diagnosis in Aerospace and Mechanical Systems137
4.4 Extension to Damage Diagnosis in Civil-Structural Systems144
4.5 Identification of Higher Modal Frequencies from Conductance Signatures146
4.6 Numerical Example150
4.7 Experimental Verifieation155
4.7.1 Damage Location Identification158
4.7.2 Effect of Number of Sensitive Modes159
4.7.3 Effect of Frequency Range161
4.8 Advantages of Modal Approach163
4.9 Limitations and Concerns of Modal Approach163
4.10 Damage Identification Using EMI and Evolutionary Programming164
4.11 EMI of PZT Transducers165
4.12 Mechanical Impedance of Damaged Structure167
4.13 Damage Identification Method173
4.13.1 EP Algorithm173
4.13.2 Fitness Function174
4.14 Experimental Set-up175
4.15 Experimental Results and Numerical Predictions177
4.15.1 Damage Identification Results181
4.15.2 Summary184
References184
Exercise 4.1186
Exercise 4.2186
5 Strength and Damage Assessment of Concrete187
5.1 Introduction187
5.2 Conventional NDE Techniques for Concrete187
5.3 Concrete Strength Evaluation Using EMI Technique190
5.4 Extraction of Damage-Sensitive Concrete Parameters from Admittance Signatures194
5.5 Monitoring Concrete Curing Using Extracted Impedance Parameters198
5.6 Establishment of Impedance-Based Damage Model for Concrete201
5.6.1 Definition of Damage Variable201
5.6.2 Damage Variable Based on the Theory of Fuzzy Sets204
5.6.3 Fuzzy Probabilistic Damage Calibration of Piezo-Impedance Transducers207
5.7 Embedded PZT Patches and Issues Involved210
5.8 Experimental Set-up211
5.8.1 Methods to Fabricate Embeddable PZT211
5.8.2 Fabrication of Robust Embeddable PZT Patch213
5.9 Efficiency of Embedded PZT216
5.9.1 Comparison Test216
5.9.2 Monitoring Test217
5.10 Damage Analysis Using Statistical Method218
References220
6 Integration of EMI Technique with Global Vibration Techniques223
6.1 Introduction223
6.2 Piezoelectric Materials as Dynamic Strain Sensors224
6.3 Determination of Strain Mode Shapes Using Surface-Bonded PZT Patches226
6.4 Identification and Localization of Incipient Damage230
6.5 Localization of Moderate and Severe Damages Using Global Vibration Techniques234
6.5.1 For 1D Structures(Beams)234
6.5.2 For 2D Structures(Plates)236
6.6 Severity of Damage239
References243
7 Sensing Region,Load Monitoring and Practical Issues245
7.1 Sensing Region of PZT Patches245
7.1.1 Introduction245
7.1.2 Theoretical Modeling246
7.1.3 Experimental Verification258
7.1.4 Results and Discussions259
7.1.5 Summary264
7.2 PZT Patches for Load Monitoring265
7.2.1 Introduction265
7.2.2 Effect of Stress in Structure265
7.2.3 Influence of Applied Load on EM Admittance Signatures266
7.2.4 Experimental Investigations and Discussions267
7.2.5 Efficiency of EM Admittance Signatures Using Statistical Index271
7.2.6 Summary275
7.3 Practical Issues Related to Application of EMI Technique in SHM275
7.3.1 Introduction275
7.3.2 Consistency of Admittance Signatures Acquired from PZT Patch276
7.3.3 Effects of Bonding Layer and Temperature282
7.3.4 Differentiating Temperature-Induced and Damage-Induced Signature Deviations291
7.3.5 Differentiating Damage in Host Structure and in PZT Patch293
7.3.6 Summary294
References295
8 Smart Beams:A Semi-Analytical Method299
8.1 Introduction299
8.2 Analysis of a Column Coupled with Distributed Piezoelectric Actuator302
8.2.1 Motion Equations303
8.2.2 Analytical Solutions for Displacement Feedback Control306
8.2.3 Semi-Analytical Solutions for Velocity Feedback Control312
8.2.4 Effects of Feedback Strategies on Motion Equations317
8.3 Numerical simulations318
8.3.1 Numerical Results for Displacement Feedback Control319
8.3.2 Numerical Results for Velocity Feedback Control325
8.4 Conclusions and Recommendations329
8.4.1 Conclusions329
8.4.2 Recommendations329
References330
9 Smart Plates and Shells333
9.1 Optimal Vibration Control using Genetic Algorithms333
9.1.1 Introduction333
9.1.2 Sensing and Actuating Equations335
9.1.3 Energy-Based Approach for Integrated Optimal Design343
9.1.4 General Formulation and Modified Real-Encoded GA345
9.1.5 Numerical Examples348
9.2 Optimal Excitation of Piezoelectric Plates and Shells362
9.2.1 Introduction362
9.2.2 Piezoelectric Actuated Plates363
9.2.3 Piezoelectric Actuated Cylindrical Shell370
9.2.4 Optimal Placement of PZT Actuator on Plate374
9.2.5 Optimal Placement of PZT Actuator on Shell387
9.2.6 Discussions389
9.2.7 Summary391
References392
10 Cylindrical Shells with Piezoelectric Shear Actuators395
10.1 Introduction395
10.2 Governing Equations397
10.3 Non-Damping Vibration of Simply Supported Shell399
10.4 Active Vibration Control of Cylindrical Shell with PSAs401
10.5 Numerical Results and Discussions402
10.5.1 Steady-State Response Analysis403
10.5.2 Active Vibration Control407
10.6 Summary410
References410
11 Fiber Bragg Grating413
11.1 Introduction413
11.2 History of FBG414
11.3 Fabrication of FBG415
11.4 Optical Properties of Grating417
11.5 Thermal Properties of FBG420
11.6 Mechanical Properties of FBG421
11.7 Maximun Reflectivity of Bragg Grating422
11.8 Full Width at Half Maximum423
11.9 FBG Sensors424
11.9.1 Direct Sensing Using FBG424
11.9.2 Indirect Sensing by Embedded FBG425
11.10 FBG-Based Pressure/Strain Sensor427
11.11 FBG-Based Shear Force Sensor428
References435
12 Applications of Fiber Bragg Grating Sensors441
12.1 Introduction441
12.2 Pressure Monitoring at Foot Sole of Diabetic Patients441
12.3 Pressure and Temperature Monitoring in a Dental Splint445
12.3.1 Structure of FBG-Based Splint Sensor446
12.3.2 Experimental Results and Discussions447
12.4 Monitoring Civil Structures449
12.4.1 Sensing Approach449
12.4.2 Symmetrically Bonded FBG Sensor Arrays on Rebars449
12.4.3 Contact Force Measurement at Beam-Column Joint458
12.5 Multi-Component Force Measurement460
12.5.1 Basic Concept461
12.5.2 Two-Component Force Measurement462
12.5.3 2D Force Measurement466
12.5.4 3D Force Measurement467
12.6 Simultaneous Measurement of Pressure and Temperature472
12.6.1 Sensor Configuration and Working Principle472
12.6.2 Sensor Fabrication and Experimental Procedure475
12.7 Summary477
References478
13 Monitoring of Rocks and Underground Structures Using PZT and FBG Sensors481
13.1 Introduction481
13.2 Conventional Versus Smart Material Based Sensor Systems for LHR and SHM of Underground Structures482
13.3 Experimental Investigations on Rocks483
13.4 LHR by ESG and FBG Sensors485
13.4.1 Specimen 1485
13.4.2 Specimen 2487
13.5 SHM by PZT Transducers489
13.5.1 Specimen 1489
13.5.2 Specimen 2491
13.5.3 Specimen 3492
13.5.4 Extraction of Structural Mechanical Impedance493
13.5.5 Calibration of Extracted Parameters for Damage Quantification494
13.6 Robustness of PZT Transducers and FBG-Based Strain Gauges497
13.7 Potential Applications of Smart Sensors on Rock Structures497
References499
14 Ionic Polymer-Metal Composite and its Actuation Characteristics501
14.1 Introduction501
14.1.1 History and Characterizations501
14.1.2 Experimental Study and Physical Modeling503
14.1.3 Implemented and Potential Applications507
14.2 Bending Moment Capacity of IPMC507
14.2.1 Charge Redistribution507
14.2.2 Bending Moment512
14.3 Validation and Discussions520
14.4 Frequency Dependent Characteristics525
14.5 Summary529
References530
15 IPMC-Based Biomedical Applications533
15.1 Introduction533
15.2 IPMC Beam on Human Tissues534
15.2.1 Modeling of IPMC Beam on Human Tissues534
15.2.2 Illustrative Examples and Discussions536
15.3 IPMC Ring with Elastic Medium543
15.3.1 Problem Formulation543
15.3.2 Displacement Solutions546
15.3.3 Illustrative Examples548
15.4 IPMC Shell with Flowing Fluid554
15.4.1 Problem Formulation554
15.4.2 Wave Propagation Solutions559
15.4.3 Illustrative Example and Discussion563
15.5 Summary565
References567
16 Bone Characterization Using Piezo-Transducers as Bio-Medical Sensors569
16.1 Introduction569
16.2 Monitoring Changes in Bone Density572
16.3 Monitoring Healing Process in Bones575
16.4 FE Simulation of EMI Technique on Bones577
References580
17 Future of Smart Materials583
17.1 Past and Future Developments of IPMC583
17.2 PZT/MFC in Energy Harvesting585
17.2.1 Current Research in Energy Harvesting using Piezoelectric Materials585
17.2.2 Main Concerns for Future Practical Applications587
17.3 Futuristic Applications of Smart Materials591
References592
Appendix595
Index613
热门推荐
- 2011070.html
- 2151269.html
- 1617451.html
- 3050367.html
- 1474291.html
- 50217.html
- 351706.html
- 1658850.html
- 3727157.html
- 65781.html
- http://www.ickdjs.cc/book_1711958.html
- http://www.ickdjs.cc/book_3867931.html
- http://www.ickdjs.cc/book_2500908.html
- http://www.ickdjs.cc/book_3064347.html
- http://www.ickdjs.cc/book_2755498.html
- http://www.ickdjs.cc/book_1779739.html
- http://www.ickdjs.cc/book_2273586.html
- http://www.ickdjs.cc/book_1686522.html
- http://www.ickdjs.cc/book_68068.html
- http://www.ickdjs.cc/book_1190722.html