图书介绍
TWO-PHASE FLOW AND HEAT TRANSFER【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- D.BUTTERWORTH AND G.F.HEWITT 著
- 出版社: OXFORD UNIVERSITY PRESS
- ISBN:0198517157
- 出版时间:未知
- 标注页数:514页
- 文件大小:21MB
- 文件页数:538页
- 主题词:
PDF下载
下载说明
TWO-PHASE FLOW AND HEAT TRANSFERPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.INTRODUCTION:G.L.SHIRES1
1.0.Chapter objectives1
1.1.Two-phase flow1
1.2.Nomenclature4
1.3.The need to study two-phase flow7
1.4.The information required9
1.5.Guide to the chapters10
1.5.1.Two-phase flow11
1.5.2.Two-phase heat transfer13
1.5.3.Hydrodynamic instability16
1.5.4.Condensation17
1.5.5.Loss-of-coolant accidents17
2.FLOW PATTERNS:G.F.HEWITT18
2.0.Chapter objectives18
2.1.The definition of flow regimes18
2.2.Delineation of flow patterns22
2.3.Flow-pattern maps24
2.4.Mechanistic approach to flow pattern delineation.27
2.5.Phase change and phase equilibrium35
2.6.Flow and heat-transfer regimes in evaporating and condensing systems36
3.ONE-DIMENSIONAL FLOW:D.BUTTERWORTH40
3.0.Chapterobjectives40
3.1.Introduction40
3.2.Continuity relationship41
3.3.Single phase momentum and energy balances44
3.4.Two-phase energy and momentum balances46
3.4.1.Momentum equation46
3.4.2.Energy equation48
3.4.3.Homogeneous equation49
3.4.4.Relationship between the momentum and energy equations49
3.5.Introduction to critical flow51
3.6.Integrated form of the momentum equation54
4.EMPIRICAL METHODS FOR PRESSURE DROP:D.BUTTERWORTH58
4.0.Chapter objectives58
4.1.Introduction58
4.2.Correlating parameters61
4.3.Homogeneous flow66
4.4.Separated flow68
4.4.1.Separate cylinders model68
4.4.2 Lockhart-Martinelli correlation70
4.5.Mixed-flow models72
4.5.1.Baroczy correlation72
4.5.2.Chisholm and Sutherland correlation75
4.6.Void-fraction correlations79
4.7.Relationship between void fraction and frictional pressure gradient82
4.8.Integrated forms of the momentum equation83
4.9.Pressure drop in fittings86
4.9.1.Abrupt enlargement in flow area86
4.9.2.Abrupt reduction in flow area88
4.9.3.Bends89
5.VERTICAL BUBBLE AND SLUG FLOW:G.F.HEWITT91
5.0.Chapter objectives91
5.1.One-dimensional two-phase flow91
5.2.Unsteady one-dimensional flow96
5.3.The Bankoff variable-density model97
5.4.Generalized model for slip:Zuber and Findlay analysis99
5.5.Techniques for local void measurement in bubble flow101
5.6.Vertical slug flow103
6.VERTICAL ANNULAR FIoW:G.F.HEWITT107
6.0.Chapter objectives107
6.1.Parameters in annular flow107
6.2.The’triangular relationship’108
6.3.Interfacial waves in annular flow113
6.4.Measurement of liquid-entrained fraction119
6.5.Droplet mass transfer122
6.6.Liquid entrainment125
6.7.Application of the closed-form solution for annular flow126
7.POOL BOILING:D.B.R.KENNING128
7.0.Chapter objectives128
7.1.Introduction and definitions128
7.2.The boiling curve130
7.3.Effect of surface conditions133
7.4.Effect of geometry134
7.5.Effect of pressure134
7.6.Effect of time-varying surface temperature137
7.7.Effect of non-uniform surface temperature137
7.8.Effect of dissolved gas137
7.9.Low-liquid regimes137
7.10.Stable film boiling139
7.11.Critical heat flux141
7.12.Nucleate boiling143
7.12.1.Bubble nucleation143
7.12.2.Bubble growth148
7.12.3 Heat-transfer models150
7.13 Conclusion152
8.NUCLEATE BOILING IN FORCED CONVECTION:D.B.R.KENNING153
8.0.Chapter objectives153
8.1.Introduction153
8.2.Bubble nucleation155
8.3.Heat-transfer correlations158
8.4.Void fraction in subcooled boiling161
8.5.Pressure drop in subcooled boiling167
8.6.Conclusion169
9.CONVECTIVE HEAT TRANSFER IN ANNULAR FLOW:R.A.W.SHOCK170
9.0.Chapter objectives170
9.1.Introduction to annular-flow heat transfer170
9.2.Laminar-flow solutions172
9.2.1.The energy equation172
9.2.2.Case 1.174
9.2.3.Case 2.176
9.2.4.Case 3.176
9.2.5.Case 4.178
9.3.Turbulent-flow solutions178
9.4.Heat transfer in two-component systems189
10.ESTIMATION METHODS FOR FORCED-CONVECTIVE BOILING:R.A.W.SHOCK200
10.0.Chapter objectives200
10.1.Convective correlations and relation to theories200
10.2.Superposition of nucleate boiling in saturated and subtooled boiling204
10.2.1.Introduction204
10.2.2.Partial subcooled boiling205
10.2.3.Saturated convective boiling213
11.BOILING AND FLOW IN HORIZONTAL TUBES:D.BUTTERWORTH and J.M.ROBERTSON223
11.0.Chapter objectives223
11.1.Flow-pattern map for horizontal flow223
11.2.Stratified flow226
11.2.1.Useful geometric relationships226
11.2.2.Laminar flow in both phases227
11.2.3.Laminar liquid-turbulent gas229
11.2.4.Turbulent flow of both phases232
11.3.Stratified to slug transition.232
11.4.Slug flow234
11.5.Bubble flow234
11.6.Annular flow235
11.6.1.Illustration of horizontal annular flow235
11.6.2.Suggested mechanisms for transporting liquid to the top of the tube236
11.7.Heat-transfer coefficients242
11.8.Burnout in horizontal tubes243
11.8.1.Occurrence of burnout and its effect in practice243
11.8.2.Observations of burnout in horizontal tubes244
11.8.3.Tentative interpretations of burnout data249
12.INTRODUCTION TO BURNOUT:G.L.SHIRES252
12.0.Chapter objectives252
12.1.A description of burnout252
12.2.History255
12.3.Factors influencing burnout255
12.4.Evaluation of burnout258
12.5.Basic burnout measurements in vertical straight tubes260
12.5.1.Uniform heat flux260
12.5.2.Straight tube,non-uniform heat flux262
12.6.Modelling of burnout using Freon264
12.7.Burnout in complex geometries267
12.7.1.Burnout evaluation of reactor fuel268
12.7.2.Burnout evaluation of boiler tubes273
12.8.Summary278
13.MECHANISMS OF BURNOUT:G.F.HEWITT279
13.0.Chapter objectives279
13.1.Definition of burnout279
13.2.Evaluation of the burnout mechanism280
13.3.The entrainment diagram and its applications284
13.4.Calculation of onset of burnout in annular flow291
14.PREDICTION OF BURNOUT:D.H.LEE295
14.0.Chapter objectives295
14.1.Trend of parameters295
14.1.1.Inlet subcooling296
14.1.2.Mass velocity297
14.1.3.Pressure298
14.1.4.Geometry300
14.1.5.Local quality301
14.2.Accuracy of burnout correlation305
14.3.Correlating parameters305
14.4.Burnout in tubes306
14.5.Burnout in tubes at high pressure309
14.6.Burnout in rectangular channels309
14.7.Burnout in annular channels311
14.8.Burnout in rod clusters313
14.8.1.Whole channel model for correlating rod-cluster burnout313
14.8.2.Subchannel models for correlating rod-cluster burnout316
14.9.Secondary effects influencing prediction of burnout319
14.9.1.Heat-flux profile319
14.9.2.Direction of flow320
14.10.Prediction of burnout margin321
15.FOULING IN BOILING-WATER SYSTEMS:R.V.MACBETH323
15.0.Chapter objectives323
15.1.Introduction323
15.2.Problems of experimenting with crud324
15.3.The nature of crud deposits326
15.4.The nature of boiling on a crudded surface329
15.5.Model of wick boiling in a magnetite crud deposit332
15.6.Effect of crud deposits on surface temperature335
15.7.Effect of crud deposits on burnout337
15.8.The effect of crud deposits on frictional pressure drop339
16.INTRODUCTION TO HYDRODYNAMIC INSTABILITY:N.A.BAILEY343
16.0.Chapter objectives343
16.1.Introduction343
16.2.The ‘Ledinegg’instability344
16.3.Oscillations due to compressible volumes348
16.4.Flow oscillations due to the growth of voids349
16.5.Acoustic effects351
16.6.Parallel-channel and natural-circulation loop instability352
16.7.Situations where instabilities arise353
16.8.The designer’s requirements354
16.9.Experimental methods to determine the onset of parallel-channel or natural-circulation-loop instability356
16.10.A review of some experimental investigations into the onset of hydrodynamic instability359
16.10.1.Natural-circulation-loop instability361
16.10.2.Parallel-channel instability364
16.11.Prorlems arising in the application of models and tests to designs371
16.12.The application of models and experimental tests to plant problems372
17.OSCILLATORY INSTABILITY:R.POTTER374
17.0.Chapter objectives374
17.1.Introduction374
17.2.General background to instabilities and noise amplification375
17.3.Outline of feedback analysis376
17.4.Example of an instability mode in boiling-water reactors380
17.5.Hydrodynamic instability382
17.6.Illustrative example385
17.7.Circuit geometry389
17.8.Other methods of analysis391
17.9.Concluding remarks393
18.INTRODUCTION TO CONDENSATION:D.BUTTERWORTH394
18.0.Chapter objectives394
18.1.Modes of condensation394
18.2.Resistances to heat transfer during condensation396
18.3.Homogeneous condensation399
18.3.1.Droplet equilibrium399
18.3.2.Nucleation400
18.4.Dropwise condensation403
18.5.Direct-contact condensation405
18.5.1.Spray condensers405
18.5.2.Pool condensers409
18.6.Interfacial resistance409
18.7.Gas-phase heat and mass transfer413
18.7.1.Mass transfer413
18.7.2.Effect of mass transfer on heat transfer415
18.7.3.Condensing curves418
18.7.4.Single vapour in the presence of incondensable gas420
18.7.5.Multicomponent condensation423
18.8.Effect of condensation on interfacial shear stress425
19.FILMWISE CONDENSATION:D.BUTTERWORTB426
19.0.Chapter objectives426
19.1.Condensation on a vertical surface426
19.1.1.Laminar film condensation-Nusselt solution426
19.1.2.Extension of the Nusselt analysis to include subcooling and non-linear temperature profile433
19.1.3.Inclusion of inertial effects438
19.1.4.Effect of vapour superheat440
19.1.5.Effect of waves441
19.1.6.Effect of turbulence443
19.2.Condensation on a horizontal tube447
19.2.1.Outside a single tube447
19.2.2.Condensation outside a bundle of tubes448
19.2.3.Inside a horizontal tube451
19.3.Condensation with high vapour shear453
19.3.1.Different tube orientations and vapour flow directions453
19.3.2.Horizontal tube with perpendicular vapour flow454
19.3.3.Flow in a tube455
19.4.Special surfaces for enhancing film condensation459
20.LOSS-OF-COOLANT ACCIDENTS:I.BRITTAIN463
20.0.Chapter objectives463
20.1.Introduction463
20.2.Fuel-pin behaviour465
20.3.The loss-of-coolant accident466
20.3.1.Blow-down phase468
20.3.2.Core heat-up phase468
20.3.3.Reflood phase468
20.4.Critical-flow model469
20.5.Hydrodynamics and heat transfer during blow-down471
20.5.1.Fuel-pin heat transfer471
20.5.2.Burnout correlations472
20.5.3.Pump models473
20.5.4.Steam drum behaviour473
20.6.The s?agnation problem474
20.7.Emergency core-cooling systems476
20.8.Summary477
REFERENCES479
INDEX511
热门推荐
- 445257.html
- 3863383.html
- 1086474.html
- 586867.html
- 1905556.html
- 2798650.html
- 361945.html
- 2874352.html
- 2974052.html
- 287697.html
- http://www.ickdjs.cc/book_3390709.html
- http://www.ickdjs.cc/book_1828229.html
- http://www.ickdjs.cc/book_2581513.html
- http://www.ickdjs.cc/book_3418368.html
- http://www.ickdjs.cc/book_1159866.html
- http://www.ickdjs.cc/book_2044308.html
- http://www.ickdjs.cc/book_1885822.html
- http://www.ickdjs.cc/book_2580164.html
- http://www.ickdjs.cc/book_412758.html
- http://www.ickdjs.cc/book_3402895.html