图书介绍
黎曼几何 影印本【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- (美)艾森哈特著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7510037498
- 出版时间:2011
- 标注页数:306页
- 文件大小:44MB
- 文件页数:316页
- 主题词:
PDF下载
下载说明
黎曼几何 影印本PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER ⅠTensor analysis1
1. Transformation of co?rdinates. The summation convention1
2. Contravariant vectors. Congruences of curves3
3. Invariants. Covariant vectors6
4. Tensors. Symmetric and skew-symmetric tensors9
5. Addition, subtraction and multiplication of tensors. Contraction12
6. Conjugate symmetric tensors of the second order. Associate tensors14
7. The Christoffel 3-index symbols and their relations17
8. Riemann symbols and the Riemaun tensor. The Ricci tensor19
9. Quadratic differential forms22
10. The equivalence of symmetric quadratic differential forms23
11. Covariant differentiation with respect to a tensor g?26
CHAPTER Ⅱ Introduction of a metric34
12. Definition of a metric. The fundamental tensor34
13.Angle of two vectors. Orthogonality37
14. Differential parameters. The normals to a hypersurface41
15. N-tuply orthogonal systems of hypersurfaces in a V?43
16. Metric properties of a space V? immersed in a V?44
17. Geodesics48
18. Riemannian, normal and geodesic co?rdinates53
19. Geodesic form of the linear element. Finite equations of geodesics.57
20. Curvature of a curve60
21. Parallelism62
22. Parallel displacement and the Riemann tensor65
23. Fields of parallel vectors67
24. Associate directions. Parallelism in a sub-space72
25. Curvature of V? at a point79
26. The Bianchi identity. The theorem of Schur82
27. Isometric correspondence of spaces of constant curvature. Motions in a V?84
28. Conformal spaces. Spaces conformal to a flat space89
CHAPTER Ⅲ Orthogonal ennuples96
29. Determination of tensors by means of the components of an orthogonal ennuple and invariants96
30. Coefficients of rotation. Geodesic congruences97
31. Determinants and matrices101
32. The orthogonal ennuple of Schmidt. As?ociate directions of higher orders. The Frenet formulas for a curve in a Vn103
33. Principal directions determined by a symmetric covariant tensor of the second order107
34. Geometrical interpretation of the Ricci tensor. The Ricci principal directions113
35. Condition that a congruence of an orthogonal ennuple be normal114
36. N-tuply orthogonal systems of hypersurfaces117
37. N-tuply orthogonal systems of hypersurfaces in a space conformal to a flat space119
38. Congruences canonical with respect to a given congruence125
39. Spaces for which the equations of geodesics admit a first integral128
40. Spaces with corresponding geodesics131
41. Certain spaces with corresponding geodesics135
CHAPTERⅣ The geometry of sub-spaces143
42. The normals to a space Vn immersed in a space Vm143
43. The Gauss and Codazzi equations for a hypersurface146
44. Curvature of a curve in a hypersurface150
45. Principal normal curvatures of a hypersurface and lines of curvature.152
46. Properties of the second fundamental form. Conjugate directions.Asymptotic directions155
47. Equations of Gauss and Codazzi for a Vn immersed in a Vm159
48. Normal and relative curvatures of a curve in a Vn immersed in a Vm164
49. The second fundamental form of a Vn in a Vm. Conjugate and asymp-totic directions166
50. Lines of curvature and mean curvature167
51. The fundamental equations of a Vn in a Vm in terms of invariants and an orthogonal ennuple170
52. Minimal varieties176
53. Hypersurfaces with indeterminate lines of curvature179
54. Totally geodesic varieties in a space183
CHAPTER Ⅴ Sub-spaces of a flat space187
55. The class of a space Vn187
56. A space Vn of class p>l189
57. Evolutes of a Vn in an Sn+p192
58. A subspace Vn of a Vm immersed in an Sm+p195
59. Spaces Vn of class one197
60. Applicability of hypersurfaces of a flat space200
61. Spsces of constant curvature which are hypersurfaces of a flat space201
62. Coǒrdinates of Weierstrass. Motion in a space of constant curvature204
63. Equations of geodesics in a space of constant curvature in terms of coǒrdinates of Weierstrass207
64. Equations of a space Vn immersed in a Vm of constant curvature210
65. Spaces Vn conformal to an Sn214
CHAPTER Ⅵ Groups of motions221
66. Properties of continuous groups221
67. Transitive and intransitive groups. Invariant varieties225
68. Infinitesimal transformations which preserve geodesics227
69. Infinitesimal conformal transformations230
70. Infinitesimal motions. The equations of Killing233
71. Conditions of integrability of the equations of Killing. Spaces of constant curvature237
72. Infinitesimal translations239
73. Geometrical properties of the paths of a motion240
74. Spaces V? which admit a group of motions241
75. Intransitive groups of motions244
76. Spaces V? admitting a G? of motions. Complete groups of motions of order n(n+1)/2-1245
77. Simply transitive groups as groups of motions247
热门推荐
- 1389872.html
- 2868694.html
- 823350.html
- 2517412.html
- 356679.html
- 844270.html
- 330500.html
- 2849132.html
- 2193682.html
- 444657.html
- http://www.ickdjs.cc/book_2300982.html
- http://www.ickdjs.cc/book_736470.html
- http://www.ickdjs.cc/book_3015629.html
- http://www.ickdjs.cc/book_3233120.html
- http://www.ickdjs.cc/book_1263707.html
- http://www.ickdjs.cc/book_1619594.html
- http://www.ickdjs.cc/book_917698.html
- http://www.ickdjs.cc/book_1914308.html
- http://www.ickdjs.cc/book_774879.html
- http://www.ickdjs.cc/book_509941.html