图书介绍

微分几何基础 英文版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

微分几何基础 英文版
  • SergeLang编著 著
  • 出版社: 世界图书北京出版公司
  • ISBN:9787510005404
  • 出版时间:2010
  • 标注页数:535页
  • 文件大小:17MB
  • 文件页数:559页
  • 主题词:微分几何-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

微分几何基础 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART Ⅰ General Differential Theory1

CHAPTER Ⅰ Differential Calculus3

1.Categories4

2.Topological Vector Spaces5

3.Derivatives and Composition of Maps8

4.Integration and Taylor's Formula12

5.The Inverse Mapping Theorem15

CHAPTER Ⅱ Manifolds22

1.Atlases,Charts,Morphisms22

2.Submanifolds,Immersions,Submersions25

3.Partitions of Unity33

4.Manifolds with Boundary39

CHAPTER Ⅲ Vector Bundles43

1.Definition,Pull Backs43

2.The Tangent Bundle51

3.Exact Sequences of Bundles52

4.Operations on Vector Bundles58

5.Splitting of Vector Bundles63

CHAPTER Ⅳ Vector Fields and Differential Equations66

1.Existence Theorem for Differential Equations67

2.Vector Fields,Curves,and Flows88

3.Sprays96

4.The Flow of a Spray and the Exponential Map105

5.Existence of Tubular Neighborhoods110

6.Uniqueness of Tubular Neighborhoods112

CHAPTER Ⅴ Operations on Vector Fields and Differential Forms116

1.Vector Fields,Differential Operators,Brackets116

2.Lie Derivative122

3.Exterior Derivative124

4.The Poincaré Lemma137

5.Contractions and Lie Derivative139

6.Vector Fields and 1-Forms Under Self Duality143

7.TheCanonical 2-Form149

8.Darboux's Theorem151

CHAPTER Ⅵ The Theorem of Frobenius155

1.Statement of the Theorem155

2.Differential Equations Depending on a Parameter160

3.Proof of the Theorem161

4.The Global Formulation162

5.Lie Groups and Subgroups165

PART Ⅱ Metrics,Covariant Derivatives,and Riemannian Geometry171

CHAPTER Ⅶ Metrics173

1.Definition and Functoriality173

2.The Hilbert Group177

3.Reduction to the Hilbert Group180

4.Hilbertian Tubular Neighborhoods184

5.The Morse-Palais Lemma186

6.The Riemannian Distance189

7.The Canonical Spray192

CHAPTER Ⅷ Covariant Derivatives and Geodesics196

1.Basic Properties196

2.Sprays and Covariant Derivatives199

3.Derivative Along a Curve and Parallelism204

4.The Metric Derivative209

5.More Local Results on the Exponential Map215

6.Riemannian Geodesic Length and Completeness221

CHAPTER Ⅸ Curvature231

1.The Riemann Tensor231

2.Jacobi Lifts239

3.Application of Jacobi Lifts to Texpx246

4.Convexity Theorems255

5.Taylor Expansions263

CHAPTER Ⅹ Jacobi Lifts and Tensorial Splitting of the Double Tangent Bundle267

1.Convexity of Jacobi Lifts267

2.Global Tubular Neighborhood of a Totally Geodesic Submanifold271

3.More Convexity and Comparison Results276

4.Splitting of the Double Tangent Bundle279

5.Tensorial Derivative of a Curve in TX and of the Exponential Map286

6.The Flow and the Tensorial Derivative291

CHAPTER Ⅺ Curvature and the Variation Formula294

1.The Index Form,Variations,and the Second Variation Formula294

2.Growth of a Jacobi Lift304

3.The Semi Parallelogram Law and Negative Curvature309

4.Totally Geodesic Submanifolds315

5.Rauch Comparison Theorem318

CHAPTER Ⅻ An Example of Seminegative Curvature322

1.POSn(R) as a Riemannian Manifold322

2.The Metric Increasing Property of the Exponential Map327

3.Totally Geodesic and Symmetric Submanifolds332

CHAPTER ⅩⅢ Automorphisms and Symmetries339

1.The Tensorial Second Derivative342

2.Alternative Definitions of Killing Fields347

3.Metric Killing Fields351

4.Lie Algebra Properties of Killing Fields354

5.Symmetric Spaces358

6.Parallelism and the Riemann Tensor365

CHAPTER ⅩⅣ Immersions and Submersions369

1.The Covariant Derivative on a Submanifold369

2.The Hessian and Laplacian on a Submanifold376

3.The Covariant Derivative on a Riemannian Submersion383

4.The Hessian and Laplacian on a Riemannian Submersion387

5.The Riemann Tensor on Submanifolds390

6.The Riemann Tensor on a Riemannian Submersion393

PART Ⅲ Volume Forms and Integration395

CHAPTER ⅩⅤ Volume Forms397

1.Volume Forms and the Divergence397

2.Covariant Derivatives407

3.The Jacobian Determinant of the Exponential Map412

4.The Hodge Star on Forms418

5.Hodge Decomposition of Differential Forms424

6.Volume Forms in a Submersion428

7.Volume Forms on Lie Groups and Homogeneous Spaces435

8.Homogeneously Fibered Submersions440

CHAPTER ⅩⅥ Integration of Differential Forms448

1.Sets of Measure 0448

2.Change of Variables Formula453

3.Orientation461

4.The Measure Associated with a Differential Form463

5.Homogeneous Spaces471

CHAPTER ⅩⅦ Stokes'Theorem475

1.Stokes'Theorem for a Rectangular Simplex475

2.Stokes'Theorem on a Manifold478

3.Stokes'Theorem with Singularities482

CHAPTER ⅩⅧ Applications of Stokes'Theorem489

1.The Maximal de Rham Cohomology489

2.Moser's Theorem496

3.The Divergence Theorem497

4.The Adjoint of d for Higher Degree Forms501

5.Cauchy's Theorem503

6.The Residue Theorem507

APPENDIX The Spectral Theorem511

1.Hilbert Space511

2.Functionals and Operators512

3.Hermitian Operators515

Bibliography523

Index531

热门推荐