图书介绍
加性数论 逆问题与和集几何【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- (美)纳森著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510044083
- 出版时间:2012
- 标注页数:295页
- 文件大小:6MB
- 文件页数:310页
- 主题词:数论-研究-英文
PDF下载
下载说明
加性数论 逆问题与和集几何PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Simple inverse theorems1
1.1 Direct and inverse problems1
1.2 Finite arithmetic progressions7
1.3 An inverse problem for distinct summands13
1.4 A special case18
1.5 Small sumsets:The case |2A| ?3k-421
1.6 Application:The number of sums and products29
1.7 Application:Sumsets and powers of231
1.8 Notes33
1.9 Exercises35
2 Sums of congruence classes41
2.1 Addition in groups41
2.2 The e-transform42
2.3 The Cauchy-Davenport theorem43
2.4 The Erd?s-Ginzburg-Ziv theorem48
2.5 Vosper's theorem52
2.6 Application:The range ofa diagonal form57
2.7 Exponential sums62
2.8 The Freiman-Vosper theorem67
2.9 Notes73
2.10 Exercises74
3 Sums of distinct congruence classes77
3.1 The Erd?s-Heilbronn conjecture77
3.2 Vaodermonde determinants78
3.3 Multidimensional ballot numbers81
3.4 A review oflinear algebra89
3.5 Alternating products92
3.6 Erd?s-Heilbronn,concluded95
3.7 The polynomial method98
3.8 Erd?s-Heilbronn via polynomials101
3.9 Notes106
3.10 Exercises107
4 Kneser's theorem for groups109
4.1 Periodic subsets109
4.2 The addition theorem110
4.3 Application:The sum oftwo sets ofintegers117
4.4 Application:Basesforfiniteandσ-finite groups127
4.5 Notes130
4.6 Exercises131
5 Sums of vectors in Euclidean space133
5.1 Sinail sumsets and hyperplanes133
5.2 Linearly independent hyperplanes135
5.3 Blocks142
5.4 Proofofthe theorem152
5.5 Notes163
5.6 Exercises163
6 Geometry of numbers167
6.1 Lattices and determinants167
6.2 Convex bodies and Minkowski's FirstTheorem174
6.3 Application:Sums offour squares177
6.4 Successive minima and Minkowski's second theorem180
6.5 Bases for sublattices185
6.6 Torsion-free abelian groups190
6.7 An important example194
6.8 Notes196
6.9 Exercises196
7 Pliinnecke's inequality201
7.1 Pliinnecke graphs201
7.2 Examples ofPlüinnecke graphs203
7.3 Multiplicativityofmagnification ratios205
7.4 Menger's theorem209
7.5 Pliinnecke's inequality212
7.6 Application:Estimates for sumsets in groups217
7.7 Application:Essential components221
7.8 Notes226
7.9 Exercises227
8 Freiman's theorem231
8.1 Multidimensional arithmetic progressions231
8.2 Freiman isomorphisms233
8.3 Bogolyubov's method238
8.4 Ruzsa's proof,concluded244
8.5 Notes251
8.6 Exercises252
9 Applications of Freiman's theorem255
9.1 Combinatorial number theory255
9.2 Small sumsets and long progressions255
9.3 The regularity iemma257
9.4 Tbe Balog-Szemer?di theorem270
9.5 A conjecture ofErd?s277
9.6 The proper conjecture278
9.7 Notes279
9.8 Exercises280
References283
Index292
热门推荐
- 1743132.html
- 1782220.html
- 323808.html
- 3071586.html
- 3526061.html
- 670279.html
- 1082188.html
- 167536.html
- 980971.html
- 3254043.html
- http://www.ickdjs.cc/book_2266235.html
- http://www.ickdjs.cc/book_495312.html
- http://www.ickdjs.cc/book_3368006.html
- http://www.ickdjs.cc/book_2526144.html
- http://www.ickdjs.cc/book_1805743.html
- http://www.ickdjs.cc/book_3664792.html
- http://www.ickdjs.cc/book_564906.html
- http://www.ickdjs.cc/book_1790513.html
- http://www.ickdjs.cc/book_1845691.html
- http://www.ickdjs.cc/book_1563543.html