图书介绍

Calculus 2【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

Calculus 2
  • 马继刚,邹云志,P.W.Aitchison 著
  • 出版社: 北京:高等教育出版社
  • ISBN:9787040292077
  • 出版时间:2010
  • 标注页数:285页
  • 文件大小:31MB
  • 文件页数:294页
  • 主题词:微积分-双语教学-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Calculus 2PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 5 Vectors and the Geometry of Space1

5.1 Vectors1

5.1.1 Concepts of Vectors1

5.1.2 Linear Operations Involving Vectors2

5.1.3 Coordinate Systems in Three-Dimensional Space3

5.1.4 Representing Vectors Using Coordinates6

5.1.5 Lengths,Direction Angles and Projections of Vectors8

5.2 Dot Product,Cross Product and Scalar Triple Product11

5.2.1 The Dot Product11

5.2.2 The Cross Product15

5.2.3 Scalar Triple Product17

5.3 Equations of Planes and Lines18

5.3.1 Planes18

5.3.2 Lines22

5.4 Surfaces In Space26

5.4.1 Surfaces and Equations26

5.4.2 Cylinder27

5.4.3 Surface of Revolution28

5.4.4 Quadric Surfaces29

5.5 Curves in Space30

5.5.1 General Equations of Curves in the Space30

5.5.2 Parametric Equations of Curves in the Space31

5.5.3 Parametric Equations of Surfaces in the Space32

5.5.4 Projections of Curves in the Space32

5.6 Exercises34

5.6.1 Vectors34

5.6.2 Planes and Lines in Space35

5.6.3 Surfaces and Curves in Space36

5.6.4 Questions to Guide Your Revision37

CHAPTER 6 Functions of Several Variables38

6.1 Functions of Several Variables38

6.1.1 Definition38

6.1.2 Limits41

6.1.3 Continuity45

6.2 Partial Derivatives47

6.2.1 Definition47

6.2.2 Partial Derivative of Higher Order51

6.3 Total Differential53

6.3.1 Definition53

6.3.2 The Total Differential Approximation55

6.4 The Chain Rule57

6.5 Implicit Differentiation62

6.5.1 Functions Defined by a Single Equation62

6.5.2 Functions Defined Implicitly by System of Equations64

6.6 Applications of the Differential Calculus66

6.6.1 Tangent Lines and Normal Planes66

6.6.2 Tangent Planes and Normal Lines for Surfaces68

6.7 Directional Derivatives and Gradient Vectors72

6.8 Maximum and Minimum76

6.8.1 Extrema of Functions of Several Variables76

6.8.2 Lagrange Multipliers81

6.9 Additional Materials84

6.9.1 Taylor's Theorem for Functions of Two Variables84

6.9.2 Clairaut84

6.9.3 Cobb-Douglas Production Function85

6.10 Exercises86

6.10.1 Functions of Several Variables86

6.10.2 Applications of Partial Derivatives88

6.10.3 Questions to Guide Your Revision90

CHAPTER 7 Multiple Integrals92

7.1 Definition and Properties92

7.2 Iterated Integrals96

7.2.1 Iterated Integrals in Rectangular Coordinates96

7.2.2 Change of Variables Formula for Double Integrals101

7.3 Triple Integrals104

7.3.1 Triple Integrals in Rectangular Coordinates104

7.3.2 Change of Variables in Triple Integrals109

7.4 The Area of a Surface115

7.5 Additional Materials117

7.6 Exercises118

7.6.1 Double Integrals118

7.6.2 Triple Integrals120

7.6.3 Applications of Multiple Integrals120

7.6.4 Questions to Guide Your Revision121

CHAPTER 8 Line and Surface Integrals123

8.1 Line Integrals123

8.1.1 Introduction123

8.1.2 Definition of the Line Integral with Respect to Arc Length124

8.1.3 Evaluating Line Integrals,?cf(x,y)ds,in R2125

8.1.4 Evaluating Line Integrals,?cf(x,y,z)ds,in R3125

8.2 Vector Fields,Work,and Flows128

8.2.1 Introduction128

8.2.2 The Line Integral of a Vector Field Along a Curve C129

8.2.3 Different Forms of the Line Integral Including ?c?·d?131

8.2.4 Examples of Line Integrals132

8.3 Green's Theorem in R2135

8.3.1 The Circulation-Curl Form of Green's Theorem135

8.3.2 The Divergence-Flux Form of Green's Theorem137

8.3.3 Generalized Green's Theorem141

8.4 Path Independent Line Integrals and Conservative Fields142

8.4.1 Introduction142

8.4.2 Fundamental Results on Path Independent Line Integrals143

8.5 Surface Integrals150

8.5.1 Definition of Integration With Respect to Surface Area150

8.5.2 Evaluation of Surface Integrals151

8.6 Surface Integrals of Vector Fields156

8.6.1 Definition and Properties of Flux,?s?·?dS156

8.6.2 Evaluating?·?dS for a Surfacez=z(x,y)157

8.7 The Divergence Theorem163

8.7.1 Introduction163

8.7.2 Physical interpretation of the Divergence ?·?(x,y,z)164

8.8 Stoke's Theorem169

8.9 Additional Materials173

8.9.1 Green173

8.9.2 Gauss174

8.9.3 Stokes175

8.10 Exercises176

8.10.1 Line Integrals176

8.10.2 Surface Integrals177

8.10.3 Questions to Guide Your Revision178

CHAPTER 9 Infinite Sequences,Series and Approximations179

9.1 Infinite Sequences179

9.2 Infinite Series181

9.2.1 Definition of Infinite Series181

9.2.2 Properties of Convergent Series183

9.3 Tests for Convergence186

9.3.1 Series with Nonnegative Terms186

9.3.2 Series with Negative and Positive Terms194

9.4 Power Series and Taylor Series198

9.4.1 Power Series198

9.4.2 Working with Power Series204

9.4.3 Taylor Series206

9.4.4 Applications of Power Series214

9.5 Fourier Series215

9.5.1 Fourier Series Expansion with Period 2π216

9.5.2 Fourier Cosine and Sine Series with Period 2π220

9.5.3 The Fourier Series Expansion with Period 2l222

9.5.4 Fourier Series with Complex Terms224

9.6 Additional Materials225

9.6.1 Fourier225

9.6.2 Maclaurin226

9.6.3 Taylor227

9.7 Exercises228

9.7.1 Series with Constant Terms228

9.7.2 Power Series229

9.7.3 Fourier Series229

9.7.4 Questions to Guide Your Revision230

CHAPTER 10 Introduction to Ordinary Differential Equation231

10.1 Differential Equations and Mathematical Models231

10.2 Methods for Solving Ordinary Differential Equations237

10.2.1 Separable Equations237

10.2.2 Substitution Methods239

10.2.3 Exact Differential Equations240

10.2.4 Linear First-Order Differential Equations and Integrating Factors242

10.2.5 Reducible Second-Order Equations246

10.2.6 Linear Second-Order Differential Equations249

10.3 Other Ways of Solving Differential Equations262

10.3.1 Power Series Method262

10.3.2 Direction Fields263

10.3.3 Numerical Approximation:Euler's Method265

10.4 Additional Materials269

10.4.1 Euler269

10.4.2 Bernoulli270

10.4.3 The Bernoulli Family270

10.4.4 Development of Calculus271

10.5 Exercises271

10.5.1 Introduction to Differential Equations271

10.5.2 First Order Differential Equation271

10.5.3 Second Order Differential Equation272

10.5.4 Questions to Guide Your Revision272

Answers274

Reterence Books284

热门推荐