图书介绍

高等数学 下【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

高等数学 下
  • 彭斯俊,吴有方主编 著
  • 出版社: 武汉:武汉理工大学出版社
  • ISBN:7562924465
  • 出版时间:2006
  • 标注页数:254页
  • 文件大小:11MB
  • 文件页数:263页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

高等数学 下PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

8 多元函数微分法及其应用1

8.1 多元函数的基本概念1

8.1.1 平面点集1

8.1.2 多元函数概念4

8.1.3 多元函数的极限5

8.1.4 多元函数的连续性7

习题8-19

8.2.1 偏导数的定义及其计算法10

8.2 偏导数10

8.2.2 高阶偏导数13

习题8-214

8.3 全微分15

习题8-320

8.4 多元复合函数的求导法则20

8.4.1 复合函数的中间变量均为一元函数的情形20

8.4.2 复合函数的中间变量均为多元函数的情形22

8.4.3 复合函数的中间变量既有一元函数,又有多元函数的情形23

习题8-427

8.5.1 一个方程的情形28

8.5 隐函数的求导公式28

8.5.2 方程组的情形30

习题8-533

8.6 多元函数微分学的几何应用34

8.6.1 空间曲线的切线与法平面34

8.6.2 曲面的切平面与法线38

习题8-640

8.7.1 方向导数41

8.7 方向导数与梯度41

8.7.2 梯度43

习题8-745

8.8 多元函数的极值及其求法46

8.8.1 多元函数的极值46

8.8.2 二元函数的最值48

8.8.3 条件极值,拉格朗日乘数法50

习题8-854

总复习题855

9 重积分58

9.1 二重积分的概念与性质58

9.1.1 二重积分的概念58

9.1.2 二重积分的性质61

习题9-163

9.2 二重积分的计算法65

9.2.1 利用直角坐标计算二重积分65

9.2.2 利用极坐标计算二重积分71

习题9-276

9.3 三重积分78

9.3.1 三重积分的概念78

9.3.2 三重积分的计算79

习题9-386

9.4 重积分的应用88

9.4.1 曲面的面积88

9.4.2 物理应用90

习题9-494

总复习题996

10 曲线积分与曲面积分98

10.1 对弧长的曲线积分98

10.1.1 对弧长的曲线积分的概念与性质98

10.1.2 对弧长的曲线积分的计算法100

习题10-1103

10.2 对坐标的曲线积分104

10.2.1 对坐标的曲线积分的概念与性质104

10.2.2 对坐标的曲线积分的计算法106

10.2.3 两类曲线积分之间的联系110

习题10-2111

10.3 格林公式及其应用113

10.3.1 格林(Green)公式113

10.3.2 平面上曲线积分与路径无关的条件117

10.3.3 二元函数的全微分求积120

习题10-3124

10.4 对面积的曲面积分125

10.4.1 对面积的曲面积分的概念与性质125

10.4.2 对面积的曲面积分的计算法126

习题10-4129

10.5 对坐标的曲面积分130

10.5.1 对坐标的曲面积分的概念与性质130

10.5.2 对坐标的曲面积分的计算法134

10.5.3 两类曲面积分之间的联系137

习题10-5138

10.6 高斯公式 通量与散度139

10.6.1 高斯(Gauss)公式139

10.6.2 通量与散度142

习题10-6143

总复习题10144

11 微分方程146

11.1 微分方程的基本概念146

习题11-1149

11.2 可分离变量的微分方程150

11.2.1 可分离变量的微分方程150

11.2.2 可化为可分离变量的微分方程155

习题11-2157

11.3 全微分方程158

习题11-3161

11.4 一阶线性微分方程162

11.4.1 一阶线性微分方程162

11.4.2 伯努利方程164

习题11-4165

11.5 可降阶的高阶微分方程166

11.5.1 y(n)=f(x)型的微分方程167

11.5.2 y″=f(x,y′)型的微分方程168

11.5.3 y″=f(y,y′)型的微分方程169

习题11-5171

11.6 常系数齐次线性微分方程172

11.6.1 二阶常系数齐次线性微分方程172

11.6.2 n阶常系数齐次线性微分方程177

习题11-6178

11.7 常系数非齐次线性微分方程179

习题11-7184

总复习题11185

12 无穷级数187

12.1 常数项级数的概念和性质187

12.1.1 常数项级数的概念187

12.1.2 收敛级数的基本性质190

习题12-1192

12.2 常数项级数的审敛法193

12.2.1 正项级数及其审敛法193

12.2.2 交错级数及其审敛法199

12.2.3 绝对收敛与条件收敛201

习题12-2202

12.3 幂级数204

12.3.1 函数项级数的概念204

12.3.2 幂级数及其收敛性205

12.3.3 幂级数的运算208

习题12-3210

12.4 泰勒公式与泰勒级数210

12.4.1 泰勒公式210

12.4.2 泰勒级数213

12.4.3 函数展开成幂级数214

习题12-4218

12.5 函数的幂级数展开式的应用219

12.5.1 近似计算219

12.5.2 欧拉公式221

习题12-5221

12.6 傅里叶级数222

12.6.1 三角级数222

12.6.3 函数展开成傅里叶级数223

12.6.2 三角函数系的正交性223

12.6.4 正弦级数和余弦级数226

习题12-6227

12.7 一般周期函数的傅里叶级数228

习题12-7230

总复习题12230

参考答案232

附录 阅读材料(二)251

热门推荐