图书介绍

Complex Analysis【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

Complex Analysis
  • 出版社:
  • ISBN:
  • 出版时间:1953
  • 标注页数:247页
  • 文件大小:35MB
  • 文件页数:255页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Complex AnalysisPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER Ⅰ COMPLEX NUMBERS1

1.The algebra of complex numbers1

1.1.Arithmetic operations1

1.2.Square roots2

1.3.Justification4

1.4.Conjugation.Absolute value6

1.5.Inequalities8

2.The geometric representation of complex numbers10

2.1.Geometric addition and multiplication11

2.2.The binomial equation13

2.3.Definition of the argument14

2.4.Straight lines,half planes,and angles18

2.5.The spherical representation20

3.Linear transformations22

3.1.The linear group23

3.2.The cross ratio25

3.3.Symmetry26

3.4.Tangents,orientation,and angles29

3.5.Families of circles31

CHAPTER Ⅱ COMPLEX FUNCTIONS36

1.Elementary functions36

1.1.Limits and continuity36

1.2.Analytic functions38

1.3.Rational functions42

1.4.The exponential function46

1.5.The trigonometric functions49

2.Topological concepts51

2.1.Point sets51

2.2.Connected sets56

2.3.Compact sets59

2.4.Continuous functions and mappings61

2.5.Arcs and closed curves64

3.Analytic functions in a region66

3.1.Definition and simple consequences66

3.2.Conformal mapping69

4.Elementary conformal mappings72

4.1.The use of level curves72

4.2.A survey of elementary mappings75

4.3.Elementary Riemann surfaces79

CHAPTER Ⅲ COMPLEX INTEGRATION82

1.Fundamental theorems82

1.1.Line integrals82

1.2.Cauchy's theorem for a rectangle88

1.3.Cauchy's theorem in a circular disk91

2.Cauchy's integral formula92

2.1.The index of a point with respect to a closed curve92

2.2.The integral formula95

2.3.Higher derivatives96

3.Local properties of analytic functions99

3.1.Removable singularities.Taylor's theorem99

3.2.Zeros and poles102

3.3.The local mapping105

3.4.The maximum principle108

4.The general form of Cauchy's theorem111

4.1.Chains and cycles111

4.2.Simple connectivity112

4.3.Exact differentials in simply connected regions114

4.4.Multiply connected regions116

5.The calculus of residues119

5.1.The residue theorem120

5.2.The argument principle123

5.3.Evaluation of definite integrals125

CHAPTER Ⅳ INFINITE SEQUENCES132

1.Convergent sequences132

1.1.Fundamental sequences132

1.2.Subsequences134

1.3.Uniform convergence135

1.4.Limits of analytic functions137

2.Power series140

2.1.The circle of convergence140

2.2.The Taylor series141

2.3.The Laurent series147

3.Partial fractions and factorization149

3.1.Partial fractions149

3.2.Infinite products153

3.3.Canonical products155

3.4.The gamma function160

3.5.Stirling's formula162

4.Normal families168

4.1.Conditions of normality168

4.2.The Riemann mapping theorem172

CHAPTER Ⅴ THE DIRICHLET PROBLEM175

1.Harmonic functions175

1.1.Definition and basic properties175

1.2.The mean-value property178

1.3.Poisson's formula179

1.4.Harnack's principle183

1.5.Jensen's formula184

1.6.The symmetry principle189

2.Subharmonic functions193

2.1.Definition and simple properties194

2.2.Solution of Dirichlet's problem196

3.Canonical mappings of multiply connected regions199

3.1.Harmonic measures200

3.2.Green's function205

3.3.Parallel slit regions206

CHAPTER Ⅵ MULTIPLE-VALUED FUNCTIONS209

1.Analytic continuation209

1.1.General analytic functions209

1.2.The Riemann surface of a function211

1.3.Analytic continuation along arcs212

1.4.Homotopic curves215

1.5.The monodromy theorem218

1.6.Branch points220

2.Algebraic functions223

2.1.The resultant of two polynomials223

2.2.Definition and properties of algebraic functions224

2.3.Behavior at the critical points226

3.Lineat differential equations229

3.1.Ordinary points230

3.2.Regular singular points232

3.3.Solutions at infinity234

3.4.The hypergeometric differential equation235

3.5.Riemann's point of view239

INDEX243

热门推荐