图书介绍

经典与量子信息论 英文版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

经典与量子信息论 英文版
  • (法)EmmanuelDesurvire著 著
  • 出版社: 北京:科学出版社
  • ISBN:9787030365101
  • 出版时间:2013
  • 标注页数:691页
  • 文件大小:140MB
  • 文件页数:713页
  • 主题词:信息论-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

经典与量子信息论 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Probability basics1

1.1 Events,event space,and probabilities1

1.2 Combinatorics8

1.3 Combined,joint,and conditional probabilities11

1.4 Exercises18

2 Probability distributions20

2.1 Mean and variance20

2.2 Exponential,Poisson,and binomial distributions22

2.3 Continuous distributions26

2.4 Uniform,exponential,and Gaussian(normal)distributions26

2.5 Central-limit theorem33

2.6 Exercises35

3 Measuring information37

3.1 Making sense of information38

3.2 Measuring information40

3.3 Information bits43

3.4 Rényi'sfake coin45

3.5 Exercises49

4 Entropy50

4.1 From Boltzmann to Shannon50

4.2 Entropyindice53

4.3 Language entropy57

4.4 Maximum entropy(discrete source)63

4.5 Exercises67

5 Mutual information and more entropies69

5.1 Joint and conditional entropies69

5.2 Mutual information75

5.3 Relative entropy79

5.4 Exercises82

6 Differential entropy84

6.1 Entropy of continuous sources84

6.2 Maximum entropy(continuous source)90

6.3 Exercises94

7 Algorithmic entropy and Kolmogorov complexity96

7.1 Defining algorithmic entropy96

7.2 The Turingmachine97

7.3 Universal Turing machine107

7.4 Kolmogorov complexity111

7.5 Kolmogorov complexity vs.Shannon's entropy123

7.6 Exercises125

8 Information coding127

8.1 Coding numbers127

8.2 Coding language129

8.3 The Morse code132

8.4 Mean code length and coding efficiency136

8.5 Optimizing coding efficiency138

8.6 Shannon's source-coding theorem142

8.7 Exercises149

9 Optimal coding and compression151

9.1 Huffman codes151

9.2 Data compression156

9.3 Block codes162

9.4 Exercises177

10 Integer,arithmetic,and adaptive coding179

10.1 Integer coding179

10.2 Arithmetic coding185

10.3 Adaptive Huffman coding192

10.4 Lempel-Ziv coding200

10.5 Exercises207

11 Error correction208

11.1 Communication channel208

11.2 Linear block codes210

11.3 Cyclic codes217

11.4 Error-correction code types219

11.5 Corrected bit-error-rate226

11.6 Exercises230

12 Channel entropy232

12.1 Binary symmetric channel232

12.2 Nonbinary and asymmetric discrete channels234

12.3 Channel entropy and mutual information238

12.4 Symbol error rate242

12.5 Exercises244

13 Channel capacity and coding theorem245

13.1 Channel capacity245

13.2 Typical sequences and the typical set252

13.3 Shannon's channel coding theorem255

13.4 Exercises263

14 Gaussian channel and Shannon-Hartley theorem264

14.1 Gaussian channel264

14.2 Nonlinear channel277

14.3 Exercises282

15 Reversible computation283

15.1 Maxwell's demon and Landauer's principle283

15.2 From computer architecture to logic gates288

15.3 Reversible logic gates and computation297

15.4 Exercises302

16 Quantum bits and quantum gates304

16.1 Quantum bits304

16.2 Basic computations with 1-qubit quantum gates310

16.3 Quantum gates with multiple qubit inputs and outputs315

16.4 Quantum circuits322

16.5 Tensor products327

16.6 Noncloning theorem330

16.7 Exercises331

17 Quantum measurements333

17.1 Dirac notation333

17.2 Quantum measurements and types343

17.3 Quantum measurements on joint states351

17.4 Exercises355

18 Qubit measurements,superdense coding,and quantum teleportation356

18.1 Measuring single qubits356

18.2 Measuring n-qubits361

18.3 Bell state measurement365

18.4 Superdense coding366

18.5 Quantum teleportation367

18.6 Distributed quantum computing374

18.7 Exercises376

19 Deutsch-Jozsa,quantum Fourier transform,and Grover quantum database search algorithms378

19.1 Deutsch algorithm378

19.2 Deutsch-Jozsa algorithm381

19.3 Quantum Fourier transform algorithm383

19.4 Grover quantum database search algorithm389

19.5 Exercises398

20 Shor's factorization algorithm399

20.1 Phase estimation400

20.2 Order finding405

20.3 Continued fraction expansion408

20.4 From order finding to factorization410

20.5 Shor's factorization algorithm415

20.6 Factorizing N=15 and other nontrivial composites417

20.7 Public-key cryptography424

20.8 Exercises429

21 Quantum information theory431

21.1 Von Neumann entropy431

21.2 Relative,joint,and conditional entropy,and mutual information437

21.3 Quantum communication channel and Holevo bound450

21.4 Exercises454

22 Quantum data compression457

22.1 Quantum data compression and fidelity457

22.2 Schumacher's quantum coding theorem464

22.3 A graphical and numerical illustration of Schumacher's quantum coding theorem469

22.4 Exercises474

23 Quantum channel noise and channel capacity475

23.1 Noisy quantum channels475

23.2 The Holevo-Schumacher-Westmoreland capacity theorem481

23.3 Capacity of some quantum channels487

23.4 Exercises493

24 Quantum error correction496

24.1 Quantum repetition code496

24.2 Shor code503

24.3 Calderbank-Shor-Steine(CSS)codes509

24.4 Hadamard-Steane code514

24.5 Exercises521

25 Classical and quantum cryptography523

25.1 Message encryption,decryption,and code breaking524

25.2 Encryption and decryption with binary numbers527

25.3 Double-key encryption532

25.4 Cryptography without key exchange534

25.5 Public-key cryptography and RSA536

25.6 Data encryption standard(DES)and advanced encryption standard(AES)541

25.7 Quantum cryptography543

25.8 Electromagnetic waves,polarization states,photons,and quantum measurements544

25.9 A secure photon communication channel554

25.10 The BB84 protocol for QKD556

25.11 The B92 protocol558

25.12 The EPR protocol559

25.13 Is quantum cryptography"invulnerable?"562

Appendix A(Chapter 4)Boltzmann's entropy565

Appendix B(Chapter 4)Shannon's entropy568

Appendix C(Chapter 4)Maximum entropy of discrete sources573

Appendix D(Chapter 5)Markov chains and the second law of thermodynamics581

Appendix E(Chapter 6) From discrete to continuous entropy587

Appendix F(Chapter 8)Kraft-McMillan inequality589

Appendix G(Chapter 9)Overview of data compression standards591

Appendix H(Chapter 10)Arithmetic coding algorithm605

Appendix I(Chapter 10)Lempel-Ziv distinctparsing610

Appendix J(Chapter 11)Error-correction capability of linear block codes614

Appendix K(Chapter 13)Capacity of binary communication channels617

Appendix L(Chapter 13)Converse proof of the channel codingtheorem 62lAppendix M(Chapter 16)Bloch sphere representation of the qubit625

Appendix N(Chapter 16)Pauli matrices,rotations,and unitary operators627

Appendix O(Chapter 17)Heisenberg uncertainty principle635

Appendix P(Chapter 18)Two-qubit teleportation637

Appendix Q(Chapter 19)Quantum Fourier transform circuit644

Appendix R(Chapter 20)Properties of continued fraction expansion648

Appendix S(Chapter 20)Computation of inverse Fourier transform in the factorization of N=21 through Shor's algorithm653

Appendix T(Chapter 20)Modular arithmetic and Euler's theorem656

Appendix U(Chapter 21)Klein's inequality660

Appendix V(Chapter 21)Schmidt decomposition of joint pure states662

Appendix W(Chapter 21)Statepurification664

Appendix X(Chapter 21)Holevo bound666

Appendix Y(Chapter 25)Polynomial byte representation and modular multiplication672

Index676

热门推荐