图书介绍

随机分析应用导论【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

随机分析应用导论
  • 世界图书出版公司 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7506266032
  • 出版时间:2004
  • 标注页数:321页
  • 文件大小:105MB
  • 文件页数:334页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

随机分析应用导论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Preliminaries From Calculus1

1.1 Continuous and Differentiable Functions1

1.2 Right and Left-Continuous Functions2

1.3 Variation of a Function5

1.4 Riemann Integral10

1.5 Stieltjes Integral11

1.6 Differentials and Integrals15

1.7 Taylor's Formula and other results16

2 Concepts of Probability Theory23

2.1 Discrete Probability Model23

2.2 Continuous Probability Model30

2.3 Expectation and Lebesgue Integral35

2.4 Transforms and Convergence39

2.5 Independence and Conditioning40

2.6 Stochastic Processes in Continuous Time46

3 Basic Stochastic Processes55

3.1 Brownian Motion56

3.2 Brownian Motion as a Gaussian Process58

3.3 Properties of Brownian Motion Paths61

3.4 Three Martingales of Brownian Motion63

3.5 Markov Property of Brownian Motion65

3.6 Exit Times and Hitting Times68

3.7 Maximum and Minimum of Brownian Motion70

3.8 Distribution of Hitting Times72

3.9 Reflection Principle and Joint Distributions73

3.10 Zeros of Brownian Motion.Arcsine Law74

3.11 Size of Increments of Brownian Motion77

3.12 Brownian Motion in Higher Dimensions78

3.13 Random Walk80

3.14 Stochastic Integral in Discrete Time81

3.15 Poisson Process82

3.16 Exercises85

4 Brownian Motion Calculus87

4.1 Definition of It? Integral87

4.2 It? integral process95

4.3 It?'s Formula for Brownian motion99

4.4 Stochastic Differentials and It? Processes102

4.5 It?'s formula for functions of two variables109

4.6 Stochastic Exponential111

4.7 It? Processes in Higher Dimensions112

4.8 Exercises114

5 Stochastic Differential Equations117

5.1 Definition of Stochastic Differential Equations117

5.2 Strong Solutions to SDE's120

5.3 Solutions to Linear SDE's121

5.4 Existence and Uniqueness of Strong Solutions125

5.5 Markov Property of Solutions126

5.6 Weak Solutions to SDE's128

5.7 Existence and Uniqueness of Weak Solutions130

5.8 Backward and Forward Equations134

5.9 Exercises137

6 Diffusion Processes139

6.1 Martingales and Dynkin's formula139

6.2 Calculation of Expectations and PDE's143

6.3 Homogeneous Diffusions145

6.4 Exit Times From an Interval148

6.5 Representation of Solutions of PDE's152

6.6 Explosion153

6.7 Recurrence and Transience155

6.8 Diffusion on an Interval156

6.9 Stationary Distributions157

6.10 Multidimensional SDE's160

6.11 Exercises167

7 Martingales169

7.1 Definitions169

7.2 Uniform Integrability171

7.3 Martingale Convergence173

7.4 Optional Stopping175

7.5 Localization.Local Martingales177

7.6 Quadratic Variation of Martingales180

7.7 Martingale Inequalities182

7.8 Continuous martingales184

7.9 Change of Time in SDE's185

7.10 Martingale Representations187

7.11 Exercises189

8 Calculus For Semimartingales191

8.1 Semimartingales191

8.2 Quadratic Variation and Covariation192

8.3 Predictable Processes194

8.4 Doob-Meyer Decomposition195

8.5 Definition of Stochastic Integral196

8.6 Properties of Stochastic Integrals199

8.7 It?'s Formula:continuous case200

8.8 Local Times202

8.9 Stochastic Exponential203

8.10 Compensators and Sharp Bracket Process207

8.11 It?'s Formula:general case212

8.12 Elements of the General Theory214

8.13 Exercises217

9 Pure Jump Processes219

9.1 Definitions219

9.2 Pure Jump Process Filtration220

9.3 It?'s Formula for Processes of Finite Variation221

9.4 Counting Processes222

9.5 Markov Jump Processes229

9.6 Stochastic equation for Markov Jump Processes231

9.7 Explosions in Markov Jump Processes233

9.8 Exercises234

10 Change of Probability Measure237

10.1 Change of Measure for Random Variables237

10.2 Equivalent Probability Measures238

10.3 Change of Measure for Processes240

10.4 Change of Drift in Diffusion243

10.5 Change of Wiener Measure244

10.6 Change of Measure for Point Processes245

10.7 Likelihood Ratios247

10.8 Exercises250

11 Applications in Finance253

11.1 Financial Derivatives and Arbitrage253

11.2 A Finite Market Model256

11.3 Semimartingale Market Model260

11.4 Diffusion and Black-Scholes Model265

11.5 Interest Rates Models273

11.6 Options,Caps,Floors,Swaps and Swaptions281

11.7 Exercises283

12 Applications in Biology289

12.1 Branching Diffusion289

12.2 Wright-Fisher Diffusion292

12.3 Birth-Death Processes293

12.4 Exercises297

13 Applications in Engineering and Physics299

13.1 Filtering299

13.2 Stratanovich Calculus304

13.3 Random Oscillators305

13.4 Exercises313

References315

热门推荐