图书介绍

基于无规行走对反常输运的描述【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

基于无规行走对反常输运的描述
  • 刘剑 著
  • 出版社: 北京:北京邮电大学出版社
  • ISBN:9787563550036
  • 出版时间:2017
  • 标注页数:131页
  • 文件大小:14MB
  • 文件页数:131页
  • 主题词:连续时间-反常扩散-研究

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

基于无规行走对反常输运的描述PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 反常输运现象1

1.1 反常输运1

1.2 朗之万方程概述4

1.3 连续时间无规行走概述5

1.4 本书结构6

第2章 连续时间无规行走及朗之万方程8

2.1 连续时间无规行走8

2.1.1 正常扩散9

2.1.2 长等待:分数扩散方程与欠扩散10

2.1.3 长跳跃:Lévy飞行与超扩散12

2.1.4 长跳跃与长等待的竞争13

2.2 连续时间无规行走的数值模拟方案14

2.2.1 正常扩散(α=1)14

2.2.2 欠扩散(0<α<1)14

2.2.3 超扩散(1<α<2)16

2.3 环境依赖的连续时间无规行走模型17

2.4 朗之万方程与Lévy飞行23

2.4.1 朗之万方程23

2.4.2 由朗之万方程到分数Fokker-Planck方程24

2.4.3 Lévy飞行及其在外势场中的行为27

2.5 小结与讨论31

第3章 关联连续时间无规行走32

3.1 模型32

3.2 诱发反常扩散35

3.2.1 关联指数等于1情况35

3.2.2 关联指数大于1情况36

3.2.3 关联指数大于零小于1情况36

3.2.4 关联CTRW的相图37

3.3 耦合模型的广义主方程41

3.3.1 γ=142

3.3.2 1<γ<242

3.3.3 0<γ<142

3.4 关联CTRW的各态历经性质46

3.4.1 各态历经判据46

3.4.2 关联CTRW的各态历经性质52

3.5 关联CTRW的等效机制与竞争机制53

3.6 小结与讨论56

第4章 暂态双分数阶扩散57

4.1 模型57

4.2 半分数阶扩散方程(非耦合情况)58

4.3 暂态双分数阶扩散(耦合情况)61

4.3.1 γ≤α的情况62

4.3.2 γ>α暂态双分数阶扩散63

4.4 小结68

第5章 广义耦合模型诱发的非各态历经的朗之万方程描述69

5.1 耦合模型70

5.2 布朗局域化74

5.3 应用76

5.4 小结与讨论78

第6章 双模速度的Lévy噪声诱发的反常扩散79

6.1 模型80

6.1.1 模型80

6.1.2 在自由势场、周期势场以及线性势场的扩散行为80

6.2 倾斜周期势场中的反常扩散行为83

6.2.1 高斯噪声情形的正常扩散行为83

6.2.2 Lévy噪声情形的反常扩散行为84

6.3 分析与讨论87

6.4 小结与讨论89

第7章 动力学连续时间无规行走90

7.1 概述90

7.2 动力学连续时间无规行走模型91

7.2.1 自由势场中的扩散92

7.2.2 线性势场中的输运行为97

7.2.3 四次势场中的稳态分布99

7.3 结论102

第8章 非线性阻尼导致的莱维飞行收敛103

8.1 前言103

8.2 模型104

8.2.1 广义主方程104

8.2.2 数值模拟结果以及讨论106

8.3 周期势场109

8.3.1 模型109

8.3.2 结果与讨论111

8.4 小结112

附录114

A.1 分数阶微积分和Mittag-Leffler函数114

A.1.1 分数阶微积分114

A.1.2 Mittag-Leffler函数115

A.2 Fox函数115

A.3 用拉普拉斯变换方法求解线性广义朗之万方程117

参考文献121

热门推荐