图书介绍

化学计量学基础【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

化学计量学基础
  • 梁逸曾,易伦朝编著 著
  • 出版社: 上海:华东理工大学出版社
  • ISBN:9787562828716
  • 出版时间:2010
  • 标注页数:196页
  • 文件大小:17MB
  • 文件页数:209页
  • 主题词:化学计量学-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

化学计量学基础PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Introduction and Necessary Fundamental Knowledge of Mathematics3

1.1 Chemometrics:Definition and Its Brief History3

1.2 The Relationship between Analytical Chemistry and Chemometries4

1.3 The Relationship between Chemometrics,Chemoinformatics and Bioinformatic7

1.4 Necessary Knowledge of Mathematics9

1.4.1 Vector and Its Calculation10

1.4.2 Matrix and Its Calculation19

Chapter 2 Chemical Experiment Design39

2.1 Introduction39

2.2 Factorial Design and Its Rational Analysis41

2.2.1 Computation of Effects Using Sign Tables44

2.2.2 Normal Plot of Effects and Residuals45

2.3 Fractional Factorial Design47

2.4 Orthogonal Design and Orthogonal Array52

2.4.1 Definition of Orthogonal Design Table53

2.4.2 Orthogonal Arrays and Their Inter-effect Tables54

2.4.3 Linear Graphs of Orthogonal Array and Its Applications55

2.5 Uniform Experimental Design and Uniform Design Table55

2.5.1 Uniform Design Table and Its Construction56

2.5.2 Uniformity Criterion and Accessory Tables for Uniform Design59

2.5.3 Uniform Design for Pseudo-level60

2.5.4 An Example for Optimization of Eleetropherotic Separation Using Uniform Design61

2.6 D-Optimal Experiment Design65

2.7 Optimization Based on Simplex and Experiment Design68

2.7.1 Constructing an Initial Simplex to Start the Experiment Design69

2.7.2 Simplex Searching and Optimization70

Chapter 3 Processing of Analytic Signals77

3.1 Smoothing Methods of Analytical Signals77

3.1.1 Moving-Window Average Smoothing Method77

3.1.2 Savitsky-Golay Filter77

3.2 Derivative Methods of Analytical Signals83

3.2.1 Simple Difference Method83

3.2.2 Moving-Window Polynomial Least-Squares Fitting Method84

3.3 Background Correction Method of Analytical Signals89

3.3.1 Penalized Least Squares Algorithm89

3.3.2 Adaptive Iteratively Reweighted Procedure90

3.3.3 Some Examples for Correcting the Baseline from Different Instruments92

3.4 Transformation Methods of Analytical Signals94

3.4.1 Physical Meaning of the Convolution Algorithm94

3.4.2 Multichannel Advantage in Spectroscopy and Hadamard Transformation96

3.4.3 Fourier Transformation99

Appendix 1:A Matlab Program for Smoothing the Analytical Signals108

Appendix 2:A Matlab Program for Demonstration of FT Applied to Smoothing112

Chapter 4 Multivariate Calibration and Multivariate Resolution116

4.1 Multivariate Calibration Methods for White Analytical Systems116

4.1.1 Direct Calibration Methods116

4.1.2 Indirect Calibration Methods121

4.2 Multivariate Calibration Methods for Grey Analytical Systems126

4.2.1 Veetoral Calibration Methods127

4.2.2 Matrix Calibration Methods127

4.3 Multivariate Resolution Methods for Black Analytical Systems129

4.3.1 Self-modeling Curve Resolution Method131

4.3.2 Iterative Target Transformation Factor Analysis134

4.3.3 Evolving Factor Analysis and Related Methods137

4.3.4 Window Factor Analysis141

4.3.5 Heuristic Evolving Latent Projections145

4.3.6 Subwindow Factor Analysis152

4.4 Multivariate Calibration Methods for Generalized Grey Analytical Systems154

4.4.1 Principal Component Regression(PCR)156

4.4.2 Partial Least Squares(PLS)157

4.4.3 Leave-one-out Cross-validation159

Chapter 5 Pattern Recognition and Pattern Analysis for Chemical Analytical Data5.1 Introduction169

5.1.1 Chemieal Pattern Space169

5.1.2 Distance in Pattern Space and Measures of Similarity171

5.1.3 Feature Extraction Methods173

5.1.4 Pretreatment Methods for Pattern Recognition173

5.2 Supervised Pattern Recognition Methods:Discriminant Analysis Methods174

5.2.1 Discrimination Method Based on Euclidean Distance175

5.2.2 Discrimination Method Based on Mahalanobis Distance175

5.2.3 Linear Learning Machine176

5.2.4 k-Nearest Neighbors Discrimination Method177

5.3 Unsupervised Pattern Recognition Methods:Clustering Analysis Methods179

5.3.1 Minimum Spanning Tree Method179

5.3.2 k-means Clustering Method181

5.4 Visual Dimensional Reduction Based on Latent Proiections183

5.4.1 Proj ection Discrimination Method Based on Principal Component Analysis183

5.4.2 SMICA Method Based on Principal Component Analysis186

5.4.3 Classification Method Based on Partial Least Squares193

热门推荐