图书介绍

微分方程及边值问题 第3版 计算与模型【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

微分方程及边值问题 第3版 计算与模型
  • (美)爱德华兹,彭尼著 著
  • 出版社: 清华大学出版社
  • ISBN:7302099782
  • 出版时间:2004
  • 标注页数:787页
  • 文件大小:97MB
  • 文件页数:40082544页
  • 主题词:微分方程-教材-英文;边值问题-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

微分方程及边值问题 第3版 计算与模型PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 First-Order Differential Equations1

1.1 Differential Equations and Mathematical Models1

1.2 Integrals as General and Particular Solutions10

1.3 Slope Fields and Solution Curves18

1.4 Separable Equations and Applications31

1.5 Linear First-Order Equations46

1.6 Substitution Methods and Exact Equations58

CHAPTER 2 Mathematical Models and Numerical Methods77

2.1 Population Models77

2.2 Equilibrium Solutions and Stability90

2.3 Acceleration-Velocity Models98

2.4 Numerical Approximation:Euler’s Method110

2.5 A CLoser Look at the Euler Method122

2.6 The Runge-Kutta Method132

CHAPTER 3 Linear Equations of Higher Order144

3.1 Introduction: Second-Order Linear Equations144

3.2 General Solutions of Linear Equations158

3.3 Homogeneous Equations with Constant Coefficients170

3.4 Mechanical Vibrations182

3.5 Nonhomogeneous Equations and Undetermined Coefficients195

3.6 Forced Oscillations and Resonance209

3.7 Electrical Circuits222

3.8 Endpoint Problems and Eigenvalues229

CHAPTER 4 Introduction to Systems of Differential Equations242

4.1 First-Order Systems and Applications242

4.2 The Method of Elimination254

4.3 Numerical Methods for Systems265

CHAPTER 5 Linear Systems of Differential Equations281

5.1 Matrices and Linear Systems281

5.2 The Eigenvalue Method for Homogeneous Systems300

5.3 Second-Order Systems and Mechanical Applications315

5.4 Multiple Eigenvalue Solutions328

5.5 Matrix Exponentials and Linear Systems344

5.6 Nonhomogeneous Linear Systems358

CHAPTER 6 Nonlinear Systems and Phenomena366

6.1 Stability and the Phase Plane366

6.2 Linear and Almost Linear Systems378

6.3 Ecological Models: Predators and Competitors393

6.4 Nonlinear Mechanical Systems406

6.5 Chaos in Dynamical Systems423

CHAPTER 7 Laplace Transform Methods435

7.1 Laplace Transforms and Inverse Transforms435

7.2 Transformation of Initial Value Problems446

7.3 Translation and Partial Fractions457

7.4 Derivatives, Integrals,and Products of Transforms467

7.5 Periodic and Piecewise Continuous Input Functions475

7.6 Impulses and Delta Functions486

CHAPTER 8 Power Series Methods497

8.1 Introduction and Review of Power Series497

8.2 Series Solutions Near Ordinary Points510

8.3 Regular Singular Points523

8.4 Method of Frobenius:The Exceptional Cases539

8.5 Bessel’s Equation554

8.6 Applications of Bessel Functions563

CHAPTER 9 Fourier Series Methods572

9.1 Periodic Functions and Trigonometric Series572

9.2 General Fourier Series and Convergence581

9.3 Fourier Sine and Cosine Series589

9.4 Applications of Fourier Series601

9.5 Heat Conduction and Separation of Variables606

9.6 Vibrating Strings and the One-Dimensional Wave Equation621

9.7 Steady-State Temperature and Laplace’s Equatiion635

CHAPTER 10 Eigenvalues and Boundary Value Problems645

10.1 Sturm-Liouville Problems and Eigenfunction Expansions645

10.2 Applications of Eigenfunction Series658

10.3 Steady Periodic Solutions and Natural Frequencies668

10.4 Cylindrical Coordinate Problems678

10.5 Higher-Dimensional Phenomena693

References for Further Study711

Appendix: Existence and Uniqueness of Solutions714

Answers to Selected Problems729

热门推荐