图书介绍

弹性力学 上【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

弹性力学 上
  • 徐芝纶编著 著
  • 出版社: 北京:高等教育出版社
  • ISBN:7040202131
  • 出版时间:2006
  • 标注页数:308页
  • 文件大小:9MB
  • 文件页数:323页
  • 主题词:弹性力学-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

弹性力学 上PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

(上册)1

主要符号表1

第一章 绪论1

1-1 弹性力学的内容1

1-2 弹性力学中的几个基本概念2

1-3 弹性力学中的基本假定6

第二章 平面问题的基本理论9

2-1 平面应力问题与平面应变问题9

2-2 平衡微分方程10

2-3 斜面上的应力。主应力12

2-4 几何方程。刚体位移15

2-5 斜方向的应变及位移17

2-6 物理方程20

2-7 边界条件22

2-8 圣维南原理23

2-9 按位移求解平面问题25

2-10 按应力求解平面问题。相容方程27

2-11 常体力情况下的简化29

2-12 应力函数。逆解法与半逆解法32

第三章 平面问题的直角坐标解答36

3-1 多项式解答36

3-2 位移分量的求出38

3-3 简支梁受均布荷载41

3-4 楔形体受重力和液体压力45

3-5 级数式解答48

3-6 简支梁受任意横向荷载49

第四章 平面问题的极坐标解答54

4-1 极坐标中的平衡微分方程54

4-2 极坐标中的几何方程及物理方程55

4-3 极坐标中的应力函数与相容方程58

4-4 应力分量的坐标变换式59

4-5 轴对称应力和相应的位移61

4-6 圆环或圆筒受均布压力。压力隧洞63

4-7 曲梁的纯弯曲67

4-8 圆盘在匀速转动中的应力及位移70

4-9 圆孔的孔边应力集中73

4-10 楔形体在楔顶或楔面受力77

4-11 半平面体在边界上受法向集中力81

4-12 半平面体在边界上受法向分布力83

第五章 平面问题的复变函数解答88

5-1 应力函数的复变函数表示88

5-2 应力和位移的复变函数表示89

5-3 各个复变函数确定的程度91

5-4 边界条件的复变函数表示93

5-5 多连体中应力和位移的单值条件94

5-6 无限大多连体的情形97

5-7 保角变换与曲线坐标99

5-8 孔口问题102

5-9 椭圆孔口106

5-10 裂隙附近的应力集中112

5-11 正方形孔口115

第六章 温度应力的平面问题120

6-1 关于温度场和热传导的一些概念120

6-2 热传导微分方程122

6-3 温度场的边值条件124

6-4 按位移求解温度应力的平面问题126

6-5 位移势函数的引用130

6-6 用极坐标求解问题133

6-7 圆环和圆筒的轴对称温度应力135

6-8 楔形坝体中的温度应力139

第七章 平面问题的差分解145

7-1 差分公式的推导145

7-2 稳定温度场的差分解148

7-3 不稳定温度场的差分解153

7-4 应力函数的差分解156

7-5 应力函数差分解的实例161

7-6 温度应力问题的应力函数差分解163

7-7 位移的差分解166

7-8 位移差分解的实例176

7-9 多连体问题的位移差分解180

7-10 温度应力问题的位移差分解182

第八章 空间问题的基本理论190

8-1 平衡微分方程190

8-2 物体内任一点的应力状态191

8-3 主应力与应力主向193

8-4 最大与最小的应力195

8-5 几何方程。刚体位移。体应变197

8-6 物体内任一点的形变状态199

8-7 物理方程。方程总结202

8-8 轴对称问题的基本方程204

8-9 球对称问题的基本方程208

第九章 空间问题的解答210

9-1 按位移求解空间问题210

9-2 无限大弹性层受重力及均布压力212

9-3 空心圆球受均布压力213

9-4 位移势函数的引用215

9-5 乐甫位移函数及伽辽金位移函数218

9-6 半空间体在边界上受法向集中力220

9-7 半空间体在边界上受切向集中力223

9-8 半空间体在边界上受法向分布力225

9-9 两球体之间的接触压力228

9-10 按应力求解空间问题231

9-11 等截面直杆的纯弯曲234

第十章 等截面直杆的扭转238

10-1 扭转问题中的应力和位移238

10-2 扭转问题的薄膜比拟241

10-3 椭圆截面杆的扭转244

10-4 矩形截面杆的扭转246

10-5 薄壁杆的扭转249

10-6 扭转问题的差分解252

第十一章 能量原理与变分法257

11-1 弹性体的形变势能257

11-2 位移变分方程260

11-3 位移变分法264

11-4 位移变分法应用于平面问题266

11-5 应力变分方程271

11-6 应力变分法273

11-7 应力变分法应用于平面问题275

11-8 应力变分法应用于扭转问题278

11-9 解答的唯一性281

11-10 功的互等定理282

第十二章 弹性波的传播286

12-1 弹性体的运动微分方程286

12-2 弹性体中的无旋波与等容波287

12-3 平面波的传播290

12-4 表层波的传播293

12-5 球面波的传播296

内容索引298

人名对照表307

热门推荐