图书介绍
GRADUATE TEXTS IN MATHEMATICS 95:PROBABILITY【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- A.N.SHIRYAYEV 著
- 出版社: SPRINGER-VERLAG
- ISBN:0387908986
- 出版时间:1984
- 标注页数:579页
- 文件大小:80MB
- 文件页数:589页
- 主题词:
PDF下载
下载说明
GRADUATE TEXTS IN MATHEMATICS 95:PROBABILITYPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Introduction1
CHAPTER Ⅰ Elementary Probability Theory5
1.Probabilistic Model of an Experiment with a Finite Number of Outcomes5
2.Some Classical Models and Distributions17
3.Conditional Probability.Independence23
4.Random Variables and Their Properties32
5.The Bernoulli Scheme.Ⅰ.The Law of Large Numbers45
6.The Bernoulli Scheme.Ⅱ.Limit Theorems (Local,De Moivre-Laplace,Poisson)55
7.Estimating the Probability of Success in the Bernoulli Scheme68
8.Conditional Probabilities and Mathematical Expectations with Respect to Decompositions74
9.Random Walk.Ⅰ.Probabilities of Ruin and Mean Duration in Coin Tossing81
10.Random Walk.Ⅱ.Reflection Principle.Arcsine Law92
11.Martingales.Some Applications to the Random Walk101
12.Markov Chains.Ergodic Theorem.Strong Markov Property108
CHAPTER Ⅱ Mathematical Foundations of Probability Theory129
1.Probabilistic Model for an Experiment with Infinitely Many Outcomes.Kolmogorov’s Axioms129
2.Algebras and σ-algebras.Measurable Spaces137
3.Methods of Introducing Probability Measures on Measurable Spaces149
4.Random Variables.Ⅰ.164
5.Random Elements174
6.Lebesgue Integral.Expectation178
7.Conditional Probabilities and Conditional Expectations with Respect to a σ-Algebra210
8.Random Variables.Ⅱ.232
9.Construction of a Process with Given Finite-Dimensional Distribution243
10.Various Kinds of Convergence of Sequences of Random Variables250
11.The Hilbert Space of Random Variables with Finite Second Moment260
12.Characteristic Functions272
13.Gaussian Systems295
CHAPTER Ⅲ Convergence of Probability Measures.Central Limit Theorem306
1.Weak Convergence of Probability Measures and Distributions306
2.Relative Compactness and Tightness of Families of Probability Distributions314
3.Proofs of Limit Theorems by the Method of Characteristic Functions318
4.Central Limit Theorem for Sums of Independent Random Variables326
5.Infinitely Divisible and Stable Distributions335
6.Rapidity of Convergence in the Central Limit Theorem342
7.Rapidity of Convergence in Poisson’s Theorem345
CHAPTER Ⅳ Sequences and Sums of Independent Random Variables354
1.Zero-or-One Laws354
2.Convergence of Series359
3.Strong Law of Large Numbers363
4.Law of the Iterated Logarithm370
CHAPTER Ⅴ Stationary (Strict Sense) Random Sequences and Ergodic Theory376
1.Stationary (Strict Sense) Random Sequences.Measure-Preserving Transformations376
2.Ergodicity and Mixing379
3.Ergodic Theorems381
CHAPTER Ⅵ Stationary (Wide Sense) Random Sequences.L 2 Theory387
1.Spectral Representation of the Covariance Function387
2.Orthogonal Stochastic Measures and Stochastic Integrals395
3.Spectral Representation of Stationary (Wide Sense) Sequences401
4.Statistical Estimation of the Covariance Function and the Spectral Density412
5.Wold’s Expansion418
6.Extrapolation.Interpolation and Filtering425
7.The Kalman-Bucy Filter and Its Generalizations436
CHAPTER Ⅶ Sequences of Random Variables that Form Martingales446
1.Definitions of Martingales and Related Concepts446
2.Preservation of the Martingale Property Under Time Change at a Random Time456
3.Fundamental Inequalities464
4.General Theorems on the Convergence of Submartingales and Martingales476
5.Sets of Convergence of Submartingales and Martingales483
6.Absolute Continuity and Singularity of Probability Distributions492
7.Asymptotics of the Probability of the Outcome of a Random Walk with Curvilinear Boundary504
8.Central Limit Theorem for Sums of Dependent Random Variables509
CHAPTER Ⅷ Sequences of Random Variables that Form Markov Chains523
1.Definitions and Basic Properties523
2.Classification of the States of a Markov Chain in Terms of Arithmetic Properties of the Transition Probabilities p(n)ij528
3.Classification of the States of a Markov Chain in Terms of Asymptotic Properties of the Probabilities p(n)ii532
4.On the Existence of Limits and of Stationary Distributions541
5.Examples546
Historical and Bibliographical Notes555
References561
Index of Symbols565
Index569
热门推荐
- 1001597.html
- 163165.html
- 3795051.html
- 44683.html
- 1865250.html
- 3415059.html
- 2687260.html
- 560277.html
- 1729740.html
- 1133740.html
- http://www.ickdjs.cc/book_3197991.html
- http://www.ickdjs.cc/book_3249341.html
- http://www.ickdjs.cc/book_3587880.html
- http://www.ickdjs.cc/book_976053.html
- http://www.ickdjs.cc/book_2002962.html
- http://www.ickdjs.cc/book_2824492.html
- http://www.ickdjs.cc/book_262910.html
- http://www.ickdjs.cc/book_2321753.html
- http://www.ickdjs.cc/book_2418594.html
- http://www.ickdjs.cc/book_3442622.html