图书介绍

A brief introduction to fluid mechanics 2nd Edition【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

A brief introduction to fluid mechanics 2nd Edition
  • Donald F. Young ; Bruce R. Munson ; Theodore H. Okiishi 著
  • 出版社: Wiley
  • ISBN:0471362433
  • 出版时间:2001
  • 标注页数:519页
  • 文件大小:173MB
  • 文件页数:528页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

A brief introduction to fluid mechanics 2nd EditionPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1INTRODUCTION1

1.1 Some Characteristics of Fluids1

1.2 Dimensions, Dimensional Homogeneity, and Units2

1.2.1 Systems of Units5

1.3 Analysis of Fluid Behavior7

1.4 Measures of Fluid Mass and Weight7

1.4.1 Density7

1.4.2 Specific Weight8

1.4.3 Specific Gravity9

1.5 Ideal Gas Law9

1.6 Viscosity11

1.7 Compressibility of Fluids16

1.7.1 Bulk Modulus16

1.7.2 Compression and Expansion of Gases16

1.7.3 Speed of Sound17

1.8 Vapor Pressure19

1.9 Surface Tension19

Problems22

2 FLUID STATICS27

2.1 Pressure at a Point27

2.2 Basic Equation for Pressure Field29

2.3 Pressure Variation in a Fluid at Rest31

2.3.1 Incompressible Fluid31

2.3.2 Compressible Fluid34

2.4 Standard Atmosphere34

2.5 Measurement of Pressure35

2.6 Manometry37

2.6.1 Piezometer Tube37

2.6.2 U-Tube Manometer38

2.6.3 Inclined-Tube Manometer41

2.7 Mechanical and Electronic Pressure Measuring Devices42

2.8 Hydrostatic Force on a Plane Surface43

2.9 Pressure Prism48

2.10 Hydrostatic Force on a Curved Surface51

2.11 Buoyancy, Flotation, and Stability53

2.11.1 Archimedes' Principle53

2.11.2 Stability55

2.12 Pressure Variation in a Fluid with Rigid-Body Motion56

References56

Problems57

3 ELEMENTARY FLUID DYNAMICS—THE BERNOULLI EQUATION67

3.1 Newton's Second Law67

3.2 F = ma Along a Streamline68

3.3 F = ma Normal to a Streamline73

3.4 Physical Interpretation75

3.5 Static, Stagnation, Dynamic,and Total Pressure78

3.6 Examples of Use of the Bernoulli Equation81

3.6.1 Free Jets81

3.6.2 Contined Flows82

3.6.3 Flowrate Measurement89

3.7 The Energy Line and the Hydraulic Grade Line93

3.8 Restrictions on the Use of the Bernoulli Equation96

Problems97

4 FLUID KINEMATICS105

4.1 The Velocity Field105

4.1.1 Eulerian and Lagrangian Flow Descriptions107

4.1.2 One-, Two-, and Three-Dimensional Flows108

4.1.3 Steady and Unsteady Flows109

4.1.4 Streamlines, Streaklines,and Pathlines109

4.2 The Acceleration Field114

4.2.1 The Material Derivative114

4.2.2 Unsteady Effects116

4.2.3 Convective Effects117

4.2.4 Streamline Coordinates118

4.3 Control Volume and System Representations119

4.4 The Reynolds Transport Theorem120

4.4.1 Derivation of the Reynolds Transport Theorem121

4.4.2 Physical Interpretation126

4.4.3 Selection of a Control Volume127

References127

Problems127

5FINITE CONTROL VOLUME ANALYSIS132

5.1 Conservation of Mass—The Continuity Equation132

5.1.1 Derivation of the Continuity Equation132

5.1.2 Fixed, Nondeforming Control Volume134

5.1.3 Moving, Nondeforming Control Volume139

5.2 Newton's Second Law—The Linear Momentum and Moment-of-Momentum Equations141

5.2.1 Derivation of the Linear Momentum Equation141

5.2.2 Application of the Linear Momentum Equation142

5.2.3 Derivation of the Moment-of-Momentum Equation156

5.2.4 Application of the Moment-of-Momentum Equation157

5.3 First Law of Thermodynamics—The Energy Equation166

5.3.1 Derivation of the Energy Equation166

5.3.2 Application of the Energy Equation169

5.3.3 Comparison of the Energy Equation with the Bernoulli Equation172

5.3.4 Application of the Energy Equation to Nonuniform Flows179

Problems182

6DIFFERENTIAL ANALYSIS OF FLUID FLOW196

6.1 Fluid Element Kinematics197

6.1.1 Velocity and Acceleration Fields Revisited197

6.1.2 Linear Motion and Deformation198

6.1.3 Angular Motion and Deformation199

6.2 Conservation of Mass203

6.2.1 Differential Form of Continuity Equation203

6.2.2 Cylindrical Polar Coordinates205

6.2.3 The Stream Function206

6.3 Conservation of Linear Momentum210

6.3.1 Description of Forces Acting on Differential Element211

6.3.2 Equations of Motion213

6.4 Inviscid Flow214

6.4.1 Euler's Equations of Motion214

6.4.2 The Bernoulli Equation215

6.4.3 Irrotational Flow217

6.4.4 The Bern oulli Equation for Irrotational Flow218

6.4.5 The Velocity Potential218

6.5 Some Basic, Plane Potential Flows223

6.5.1 Uniform Flow224

6.5.2 Source and Sink225

6.5.3 Vortex227

6.5.4 Doublet231

6.6 Superposition of Basic, Plane Potential Flows233

6.6.1 Source in a Uniform Stream—Half-Body233

6.6.2 Flow Around a Circular Cylinder238

6.7 Other Aspects of Potential Flow Analysis244

6.8 Viscous Flow244

6.8.1 Stress-Deformation Relationships244

6.8.2 The Navier-Stokes Equations246

6.9 Some Simple Solutions for Viscous,Incompressible Fluids247

6.9.1 Steady, Laminar Flow Between Fixed Parallel Plates247

6.9.2 Couette Flow250

6.9.3 Steady, Laminar Flow in Circular Tubes253

6.10 Other Aspects of Differential Analysis255

References256

Problems256

7SIMILITUDE, DIMENSIONAL ANALYSIS, AND MODELING265

7.1 Dimensional Analysis265

7.2 Buckingham Pi Theorem267

7.3 Determination of Pi Terms268

7.4 Some Additional Comments About Dimensional Analysis274

7.4.1 Selection of Variables274

7.4.2 Determination of Reference Dimensions275

7.4.3 Uniqueness of Pi Terms275

7.5 Determination of Pi Terms by Inspection276

7.6 Common Dimensionless Groups in Fluid Mechanics277

7.7 Correlation of Experimental Data278

7.7.1 Problems with One Pi Term279

7.7.2 Problems with Two or More Pi Terms280

7.8 Modeling and Similitude283

7.8.1 Theory of Models283

7.8.2 Model Scales287

7.8.3 Distorted Models288

7.9 Some Typical Model Studies289

7.9.1 Flow Through Closed Conduits289

7.9.2 Flow Around Immersed Bodies291

7.9.3 Flow with a Free Surface294

References296

Problems296

8VISCOUS FLOW IN PIPES304

8.1 General Characteristics of Pipe Flow304

8.1.1 Laminar or Turbulent Flow305

8.1.2 Entrance Region and Fully Developed Flow307

8.2 Fully Developed Laminar Flow308

8.2.1 From F = ma Applied to a Fluid Element308

8.2.2 From the Navier-Stokes Equations313

8.3 Fully Developed Turbulent Flow313

8.3.1 Transition from Laminar to Turbulent Flow313

8.3.2 Turbulent Shear Stress314

8.3.3 Turbulent Velocity Profile315

8.4 Dimensional Analysis of Pipe Flow316

8.4.1 The Moody Chart316

8.4.2 Minor Losses321

8.4.3 Noncircular Conduits329

8.5 Pipe Flow Examples331

8.5.1 Single Pipes331

8.5.2 Multiple Pipe Systems341

8.6 Pipe Flowrate Measurement342

References347

Problems347

9FLOW OVER IMMERSED BODIES355

9.1 General External Flow Characteristics355

9.1.1 Lift and Drag Concepts356

9.1.2 Characteristics of Flow Past an Object360

9.2 Boundary Layer Characteristics363

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate363

9.2.2 Prandtl/Blasius Boundary Layer Solution365

9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate366

9.2.4 Transition from Laminar to Turbulent Flow370

9.2.5 Turbulent Boundary Layer Flow372

9.2.6 Effects of Pressure Gradient375

9.3 Drag378

9.3.1 Friction Drag379

9.3.2 Pressure Drag379

9.3.3 Drag Coefficient Data and Examples380

9.4 Lift395

9.4.1 Surface Pressure Distribution395

9.4.2 Circulation399

References400

Problems401

10OPEN-CHANNEL FLOW409

10.1 General Characteristics of Open-Channel Flow409

10.2 Surface Waves410

10.2.1 Wave Speed410

10.2.2 Froude Number Effects413

10.3 Energy Considerations413

10.3.1 Specific Energy414

10.4 Uniform Depth Channel Flow416

10.4.1 Uniform Flow Approximations416

10.4.2 The Chezy and Manning Equations417

10.4.3 Uniform Depth Examples418

10.5 Gradually Varied Flow425

10.6 Rapidly Varied Flow426

10.6.1 The Hydraulic Jump426

10.6.2 Sharp-Crested Weirs431

10.6.3 Broad-Crested Weirs433

10.6.4 Underflow Gates437

References438

Problems438

11TURBOMACHINES445

11.1 Introduction446

11.2 Basic Energy Considerations447

11.3 Basic Angular Momentum Considerations450

11.4 The Centrifugal Pump452

11.4.1 Theoretical Considerations452

11.4.2 Pump Performance Characteristics456

11.4.3 System Characteristics and Pump Selection459

11.5 Dimensionless Parameters and Similarity Laws462

11.5.1 Specific Speed466

11.6 Axial-Flow and Mixed-Flow Pumps467

11.7 Turbines469

11.7.1 Impulse Turbines470

11.7.2 Reaction Turbines477

11.8 Compressible Flow Turbomachines481

References482

Problems482

A UNIT CONVERSION TABLES490

B PHYSICAL PROPERTIES OF FLUIDS494

C PROPERTIES OF THE U.S.STANDARD ATMOSPHERE500

ANSWERS502

INDEX507

热门推荐