图书介绍

分子光谱 英文版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

分子光谱 英文版
  • (美)Jeanne L.McHale著 著
  • 出版社: 北京:科学出版社
  • ISBN:7030108825
  • 出版时间:2003
  • 标注页数:463页
  • 文件大小:26MB
  • 文件页数:481页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

分子光谱 英文版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 INTRODUCTION AND REVIEW1

1.1 Historical Perspective1

1.2 Definitions,Derivations,and Discovery3

1.3 Review of Quantum Mechanics5

1.3.1 The Particle in a Box:A Model for Translational Energies7

1.3.2 The Rigid Rotor:A Model for Rotational Motion of Diatomics10

1.3.3 The Harmonic Oscillator:Vibrational Motion14

1.4 Approximate Solutions to the Schr?dinger Equation19

1.4.1 Variation Method19

1.4.2 Perturbation Theory21

1.5 Statistical Mechanics23

1.6 Summary29

1.7 Problems30

BIBLIOGRAPHY31

2 THE NATURE OF ELECTROMAGNETIC RADIATION32

2.1 Introduction32

2.2 The Classical Description of Electromagnetic Radiation34

2.2.1 Maxwell s Equations34

2.2.2 Polarization Properties of Light39

2.2.3 Electric Dipole Radiation40

2.3 Propagation of Light in Matter41

2.3.1 Refraction41

2.3.2 Absorption and Emission of Light44

2.3.3 Effect of an Electromagnetic Field on Charged Particles45

2.4 Quantum Mechanical Aspects of Light46

2.4.1 Quantization of the Radiation Field46

2.4.2 Blackbody Radiation and the Planck Distribution Law48

2.4.3 The Photoelectric Effect and the Discovery of Photons51

2.5 Summary52

2.6 Problems53

BIBLIOGRAPHY55

3 ELECTRIC AND MAGNETIC PROPERTIES OF MOLECULES AND BULK MATTER56

3.1 Introduction56

3.2 Electric Properties of Molecules57

3.2.1 Review of Electrostatics58

3.2.2 Electric Moments60

3.2.3 Quantum Mechanical Calculation of Multipole Moments63

3.2.4 Interaction of Electric Moments with the Electric Field64

3.2.5 Polarizability and Induced Moments66

3.2.6 Frequency Dependence of Polarizability68

3.2.7 Quantum Mechanical Expression for the Polarizability70

3.3 Electric Properties of Bulk Matter71

3.3.1 Dielectric Permittivity71

3.3.2 Frequency Dependence of Permittivity74

3.3.3 Relationships between Macroscopic and Microscopic Properties76

3.3.4 The Local Field Problem:The Onsager and Kirkwood Models80

3.4 Magnetic Properties of Matter84

3.4.1 Basic Principles of Magnetism84

3.4.2 Magnetic Properties of Bulk Matter86

3.4.3 Magnetic Moments and Intrinsic Angular Momenta87

3.5 Summary89

3.6 Problems89

BIBLIOGRAPHY91

TIME-DEPENDENT PERTURBATION THEORY OF SPECTROSCOPY92

4.1 Introduction:Time Dependence in Quantum Mechanics92

4.2 Time-Dependent Perturbation Theory94

4.2.1 First-order Solution to the Time-Dependent Schr?dinger Equation94

4.2.2 Perturbation due to Electromagnetic Radiation:Momentumversus Dipole Operator96

4.2.3 Fermi s Golden Rule and the Time-Energy Uncertainty Principle99

4.3 Rate Expression for Emission102

4.3.1 Photon Density of States102

4.3.2 Fermi s Golden Rule for Stimulated and Spontaneous Emission103

4.4 Perturbation Theory Calculation of Polarizability104

4.4.1 Derivation of the Kramers-Heisenberg-Dirac Equation104

4.4.2 Finite State Lifetimes and Imaginary Component of Polarizability108

4.4.3 Oscillator Strength109

4.5 Quantum Mechanical Expression for Emission Rate110

4.6 Time Dependence of the Density Matrix112

4.7 Summary115

4.8 Problems116

BIBLIOGRAPHY118

5 THE TIME-DEPENDENT APPROACH TO SPECTROSCOPY119

5.1 Introduction119

5.2 Time-Correlation Functions and Spectra as Fourier Transform Pairs121

5.3 Properties of Time-Correlation Functions and Spectral Lineshapes126

5.4 The Fluctuation-Dissipation Theorem128

5.5 Rotational Correlation Functions and Pure Rotational Spectra130

5.5.1 Correlation Functions for Absorption and Light Scattering131

5.5.2 Classical Free-Rotor Correlation Function and Spectrum132

5.6 Reorientational Spectroscopy of Liquids134

5.6.1 Dielectric Relaxation134

5.6.2 Far-Infrared Absorption138

5.6.3 Depolarized Rayleigh Scattering141

5.7 Vibration-Rotation Spectra144

5.8 Spectral Moments147

5.9 Summary149

5.10 Problems149

BIBLIOGRAPHY151

6 EXPERIMENTAL CONSIDERATIONS:ABSORPTION,EMISSION,AND SCATTERING153

6.1 Introduction153

6.2 Einstein A and B Coefficients for Absorption and Emission154

6.3 Absorption and Stimulated Emission156

6.4 Absorption and Emission Spectroscopy158

6.4.1 Atomic Spectra162

6.4.2 Molecular Electronic Spectra162

6.5 Measurement of Light Scattering:The Raman and Rayleigh Effects164

6.6 Spectral Lineshapes167

6.7 Summary171

6.8 Problems171

BIBLIOGRAPHY173

7 ATOMIC SPECTROSCOPY174

7.1 Introduction174

7.2 Good Quantum Numbers and Not So Good Quantum Numbers174

7.2.1 The Hydrogen Atom:Energy Levels and Selection Rules175

7.2.2 Many-Electron Atoms181

7.2.3 The Clebsch-Gordan Series187

7.2.4 Spin-Orbit Coupling189

7.3 Selection Rules for Atomic Absorption and Emission191

7.3.1 E1,M1,and E2 Allowed Transitions191

7.3.2 Hyperfine Structure193

7.4 The Effect of External Fields196

7.4.1 The Zeeman Effect196

7.4.2 The Stark Effect199

7.5 Atomic Lasers and the Principles of Laser Emission201

7.6 Summary206

7.7 Problems206

BIBLIOGRAPHY208

8 ROTATIONAL SPECTROSCOPY209

8.1 Introduction209

8.2 Energy Levels of Free Rigid Rotors209

8.2.1 Diatomics210

8.2.2 Polyatomic Rotations213

8.3 Angular Momentum Coupling in Non-1Σ Electronic States220

8.4 Nuclear Statistics and J States of Homonuclear Diatomics223

8.5 Rotational Absorption and Emission Spectroscopy226

8.6 Rotational Raman Spectroscopy231

8.7 Corrections to the Rigid-Rotor Approximation237

8.8 Internal Rotation240

8.8.1 Free Rotation Limit,κBT>>V0241

8.8.2 Harmonic Oscillator Limit,κBT<<V0242

8.9 Summary244

8.10 Problems245

BIBLIOGRAPHY247

9 VIBRATIONAL SPECTROSCOPY OF DIATOMICS248

9.1 Introduction248

9.2 The Born-Oppenheimer Approximation and Its Consequences249

9.3 The Harmonic Oscillator Model252

9.4 Selection Rules for Vibrational Transitions255

9.4.1 Infrared Spectroscopy255

9.4.2 Raman Scattering260

9.5 Beyond the Rigid Rotor-Harmonic Oscillator Approximation262

9.5.1 Perturbation Theory of Vibration-Rotation Energy263

9.5.2 The Morse Oscillator and Other Anharmonic Potentials266

9.6 Summary267

9.7 Problems267

BIBLIOGRAPHY269

10 VIBRATIONAL SPECTROSCOPY OF POLYATOMIC MOLECULES270

10.1 Introduction270

10.2 Normal Modes of Vibration272

10.2.1 Classical Equations of Motion for Normal Modes273

10.2.2 Example:Normal Modes of a Linear Triatomic276

10.2.3 The Wilson F and G Matrices278

10.2.4 Group Frequencies279

10.3 Quantum Mechanics of Polyatomic Vibrations280

10.4 Group Theoretical Treatment of Vibrations282

10.4.1 Finding the Symmetries of Normal Modes282

10.4.2 Symmetries of Vibrational Wavefunctions288

10.5 Selection Rules for Infrared and Raman Scattering290

10.6 Rotational Structure293

10.7 Anharmonicity296

10.8 Selection Rules at Work:Benzene299

10.9 Solvent Effects on Infrared Spectra302

10.10 Summary305

10.11 Problems305

BIBLIOGRAPHY307

11 ELECTRONIC SPECTROSCOPY309

11.1 Introduction309

11.2 Diatomic Molecules:Electronic States and Selection Rules311

11.2.1 Molecular Orbitals and Electronic Configurations313

11.2.2 Term Symbols for Diatomics316

11.2.3 Selection Rules320

11.2.4 Examples of Selection Rules at Work:O2 and I2322

11.3 Vibrational Structure in Electronic Spectra of Diatomics323

11.3.1 Absorption Spectra323

11.3.2 Emission Spectra327

11.3.3 Dissociation and Predissociation329

11.4 Born-Oppenheimer Breakdown in Diatomic Molecules330

11.5 Polyatomic Molecules:Electronic States and Selection Rules333

11.5.1 Molecular Orbitals and Electronic States of H2O333

11.5.2 Franck-Condon Progressions in Electronic Spectra of Polyatomics335

11.5.3 Benzene:Electronic Spectra and Vibronic Activity of Nontotally Symmetric Modes338

11.6 Transition Metal Complexes342

11.7 Emission Spectroscopy of Polyatomic Molecules348

11.8 Chromophores352

11.9 Solvent Effects in Electronic Spectroscopy354

11.9.1 Solvent-Induced Frequency Shifts355

11.9.2 Solvent Effects on Intensity358

11.9.3 Specific Solvent Effects in Electronic Spectra359

11.10 Summary359

11.11 Problems360

BIBLIOGRAPHY362

12 RAMAN AND RESONANCE RAMAN SPECTROSCOPY364

12.1 Introduction364

12.2 Selection Rules in Raman Scattering366

12.2.1 Off-Resonance Raman Scattering369

12.2.2 Resonance Raman Scattering371

12.3 Polarization in Raman Scattering374

12.3.1 Polarization in Off-Resonance Raman Scattering375

12.3.2 Polarization in Resonance Raman Scattering378

12.4 Rotational and Vibrational Dynamics in Raman Scattering380

12.5 Analysis of Raman Excitation Profiles387

12.5.1 Transform Theory of Raman Intensity388

12.6 Time-Dependent Theory of Resonance Raman Spectra390

12.7 Raman Scattering as a Third-Order Nonlinear Process399

12.8 Summary404

12.9 Problems406

BIBLIOGRAPHY407

APPENDICES408

A.MATH REVIEW410

A.1 Vectors and Tensors in Three Dimensions410

A.2 Matrices412

A.3 Operations with Cartesian and Spherical Tensors415

A.4 Spherical Harmonics417

A.5 Wigner Rotation Functions and Spherical Tensors418

A.6 The Clebsch-Gordan Series and 3j Symbols421

BIBLIOGRAPHY423

B.PRINCIPLES OF ELECTROSTATICS424

B.1 Units424

B.2 Some Applications of Gauss Law425

B.2.1 The Lorentz Model of the Atom426

B.2.2 Electric Field within a Capacitor426

B.3 Some Mathematical Details427

C.GROUP THEORY430

C.1 Point Groups and Symmetry Operations430

C.2 Information Conveyed by Character Tables432

C.3 Direct Products and Reducible Representations436

C.4 Character Tables438

BIBLIOGRAPHY448

SUBJECT INDEX449

热门推荐