图书介绍
现代数论经典引论处 第2版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- K.Ireland,M.Rosen著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:
- 出版时间:2003
- 标注页数:389页
- 文件大小:48MB
- 文件页数:408页
- 主题词:
PDF下载
下载说明
现代数论经典引论处 第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 1 Unique Factorization1
1 Unique Factorization in Z1
2 Unique Factorization in k[x]6
3 Unique Factorization in a Principal Ideal Domain8
4 The Rings Z[i]and Z[ω]12
CHAPTER 2 Applications of Unique Factorization17
1 Infinitely Many Primes in Z17
2 Some Arithmetic Functions18
3 ∑ 1/p Diverges21
4 The Growth of π(x)22
CHAPTER 3 Congruence28
1 Elementary Observations28
2 Congruence in Z29
3 The Congruence ax?b(m)31
4 The Chinese Remainder Theorem34
CHAPTER 4 The Structure of U(Z/nZ)39
1 Primitive Roots and the Group Structure of U(Z/nZ)39
2 nth Power Residues45
CHAPTER 5 Quadratic Reciprocity50
1 Quadratic Residues50
2 Law of Quadratic Reciprocity53
3 A Proof of the Law of Quadratic Reciprocity58
CHAPTER 6 Quadratic Gauss Sums66
1 Algebraic Numbers and Algebraic Integers66
2 The Quadratic Character of 269
3 Quadratic Gauss Sums70
4 The Sign of the Quadratic Gauss Sum73
CHAPTER 7 Finite Fields79
1 Basic Properties of Finite Fields79
2 The Existence of Finite Fields83
3 An Application to Quadratic Residues85
CHAPTER 8 Gauss and Jacobi Sums88
1 Multiplicative Characters88
2 Gauss Sums91
3 Jacobi Sums92
4 The Equation xn+yn=1 in Fp97
5 More on Jacobi Sums98
6 Applications101
7 A General Theorem102
CHAPTER 9 Cubic and Biquadratic Reciprocity108
1 The Ring Z[ω]109
2 Residue Class Rings111
3 Cubic Residue Character112
4 Proof of the Law of Cubic Reciprocity115
5 Another Proof of the Law of Cubic Reciprocity117
6 The Cubic Character of 2118
7 Biquadratic Reciprocity:Preliminaries119
8 The Quartic Residue Symbol121
9 The Law of Biquadratic Reciprocity123
10 Rational Biquadratic Reciprocity127
11 The Constructibility of Regular Polygons130
12 Cubic Gauss Sums and the Problem of Kummer131
CHAPTER 10 Equations over Finite Fields138
1 Affine Space,Projective Space,and Polynomials138
2 Chevalley's Theorem143
3 Gauss and Jacobi Sums over Finite Fields145
CHAPTER 11 The Zeta Function151
1 The Zeta Function of a Projective Hypersurface151
2 Trace and Norm in Finite Fields158
3 The Rationality of the Zeta Function Associated to a0xm 0+a1xm 1+…+anxm n161
4 A Proof of the Hasse-Davenport Relation163
5 The Last Entry166
CHAPTER 12 Algebraic Number Theory172
1 Algebraic Preliminaries172
2 Unique Factorization in Algebraic Number Fields174
3 Ramification and Degree181
CHAPTER 13 Quadratic and Cyclotomic Fields188
1 Quadratic Number Fields188
2 Cyclotomic Fields193
3 Quadratic Reciprocity Revisited199
CHAPTER 14 The Stickelberger Relation and the Eisenstein Reciprocity Law203
1 The Norm of an Ideal203
2 The Power Residue Symbol204
3 The Stickelberger Relation207
4 The Proof of the Stickelberger Relation209
5 The Proof of the Eisenstein Reciprocity Law215
6 Three Applications220
CHAPTER 15 Bernouilli Numbers228
1 Bernoulli Numbers;Definitions and Applications228
2 Congruences Involving Bernoulli Numbers234
3 Herbrand's Theorem241
CHAPTER 16 Dirichlet L-functions249
1 The Zeta Function249
2 A Special Case251
3 Dirichlet Characters253
4 Dirichlet L-functions255
5 The Key Step257
6 Evaluating L(s,x)at Negative Integers261
CHAPTER 17 Diophantine Equations269
1 Generalities and First Examples269
2 The Method of Descent271
3 Legendre's Theorem272
4 Sophie Germain's Theorem275
5 Pell's Equation276
6 Sums of Two Squares278
7 Sums of Four Squares280
8 The Fermat Equation:Exponent 3284
9 Cubic Curves with Infinitely Many Rational Points287
10 The Equation y2=x3+k288
11 The First Case of Fermat's Conjecture for Regular Exponent290
12 Diophantine Equations and Diophantine Approximation292
CHAPTER 18 Elliptic Curves297
1 Generalities297
2 Local and Global Zeta Functions of an Elliptic Curve301
3 y2=x3+D,the Local Case304
4 y2=x3-Dx,the Local Case306
5 Hecke L-functions307
6 y2=x3-Dx,the Global Case310
7 y2=x3+D,the Global Case312
8 Final Remarks314
CHAPTER 19 The Mordell-Weil Theorem319
1 The Addition Law and Several Identities320
2 The Group E/2E323
3 The Weak Dirichlet Unit Theorem326
4 The Weak Mordell-Weil Theorem328
5 The Descent Argument330
CHAPTER 20 New Progress in Arithmetic Geometry339
1 The Mordell Conjecture340
2 Elliptic Curves343
3 Modular Curves345
4 Heights and the Height Regulator348
5 New Results on the Birch-Swinnerton-Dyer Conjecture353
6 Applications to Gauss's Class Number Conjecture358
Selected Hints for the Exercises367
Bibliography375
Index385
热门推荐
- 3271906.html
- 370392.html
- 2212531.html
- 3791286.html
- 2477348.html
- 2970516.html
- 925044.html
- 123455.html
- 3147302.html
- 2560689.html
- http://www.ickdjs.cc/book_2824268.html
- http://www.ickdjs.cc/book_828337.html
- http://www.ickdjs.cc/book_2975932.html
- http://www.ickdjs.cc/book_1993418.html
- http://www.ickdjs.cc/book_2308490.html
- http://www.ickdjs.cc/book_3780362.html
- http://www.ickdjs.cc/book_206339.html
- http://www.ickdjs.cc/book_800116.html
- http://www.ickdjs.cc/book_456113.html
- http://www.ickdjs.cc/book_674290.html