图书介绍

现代数论经典引论处 第2版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

现代数论经典引论处 第2版
  • K.Ireland,M.Rosen著 著
  • 出版社: 世界图书出版公司北京公司
  • ISBN:
  • 出版时间:2003
  • 标注页数:389页
  • 文件大小:48MB
  • 文件页数:408页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

现代数论经典引论处 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Unique Factorization1

1 Unique Factorization in Z1

2 Unique Factorization in k[x]6

3 Unique Factorization in a Principal Ideal Domain8

4 The Rings Z[i]and Z[ω]12

CHAPTER 2 Applications of Unique Factorization17

1 Infinitely Many Primes in Z17

2 Some Arithmetic Functions18

3 ∑ 1/p Diverges21

4 The Growth of π(x)22

CHAPTER 3 Congruence28

1 Elementary Observations28

2 Congruence in Z29

3 The Congruence ax?b(m)31

4 The Chinese Remainder Theorem34

CHAPTER 4 The Structure of U(Z/nZ)39

1 Primitive Roots and the Group Structure of U(Z/nZ)39

2 nth Power Residues45

CHAPTER 5 Quadratic Reciprocity50

1 Quadratic Residues50

2 Law of Quadratic Reciprocity53

3 A Proof of the Law of Quadratic Reciprocity58

CHAPTER 6 Quadratic Gauss Sums66

1 Algebraic Numbers and Algebraic Integers66

2 The Quadratic Character of 269

3 Quadratic Gauss Sums70

4 The Sign of the Quadratic Gauss Sum73

CHAPTER 7 Finite Fields79

1 Basic Properties of Finite Fields79

2 The Existence of Finite Fields83

3 An Application to Quadratic Residues85

CHAPTER 8 Gauss and Jacobi Sums88

1 Multiplicative Characters88

2 Gauss Sums91

3 Jacobi Sums92

4 The Equation xn+yn=1 in Fp97

5 More on Jacobi Sums98

6 Applications101

7 A General Theorem102

CHAPTER 9 Cubic and Biquadratic Reciprocity108

1 The Ring Z[ω]109

2 Residue Class Rings111

3 Cubic Residue Character112

4 Proof of the Law of Cubic Reciprocity115

5 Another Proof of the Law of Cubic Reciprocity117

6 The Cubic Character of 2118

7 Biquadratic Reciprocity:Preliminaries119

8 The Quartic Residue Symbol121

9 The Law of Biquadratic Reciprocity123

10 Rational Biquadratic Reciprocity127

11 The Constructibility of Regular Polygons130

12 Cubic Gauss Sums and the Problem of Kummer131

CHAPTER 10 Equations over Finite Fields138

1 Affine Space,Projective Space,and Polynomials138

2 Chevalley's Theorem143

3 Gauss and Jacobi Sums over Finite Fields145

CHAPTER 11 The Zeta Function151

1 The Zeta Function of a Projective Hypersurface151

2 Trace and Norm in Finite Fields158

3 The Rationality of the Zeta Function Associated to a0xm 0+a1xm 1+…+anxm n161

4 A Proof of the Hasse-Davenport Relation163

5 The Last Entry166

CHAPTER 12 Algebraic Number Theory172

1 Algebraic Preliminaries172

2 Unique Factorization in Algebraic Number Fields174

3 Ramification and Degree181

CHAPTER 13 Quadratic and Cyclotomic Fields188

1 Quadratic Number Fields188

2 Cyclotomic Fields193

3 Quadratic Reciprocity Revisited199

CHAPTER 14 The Stickelberger Relation and the Eisenstein Reciprocity Law203

1 The Norm of an Ideal203

2 The Power Residue Symbol204

3 The Stickelberger Relation207

4 The Proof of the Stickelberger Relation209

5 The Proof of the Eisenstein Reciprocity Law215

6 Three Applications220

CHAPTER 15 Bernouilli Numbers228

1 Bernoulli Numbers;Definitions and Applications228

2 Congruences Involving Bernoulli Numbers234

3 Herbrand's Theorem241

CHAPTER 16 Dirichlet L-functions249

1 The Zeta Function249

2 A Special Case251

3 Dirichlet Characters253

4 Dirichlet L-functions255

5 The Key Step257

6 Evaluating L(s,x)at Negative Integers261

CHAPTER 17 Diophantine Equations269

1 Generalities and First Examples269

2 The Method of Descent271

3 Legendre's Theorem272

4 Sophie Germain's Theorem275

5 Pell's Equation276

6 Sums of Two Squares278

7 Sums of Four Squares280

8 The Fermat Equation:Exponent 3284

9 Cubic Curves with Infinitely Many Rational Points287

10 The Equation y2=x3+k288

11 The First Case of Fermat's Conjecture for Regular Exponent290

12 Diophantine Equations and Diophantine Approximation292

CHAPTER 18 Elliptic Curves297

1 Generalities297

2 Local and Global Zeta Functions of an Elliptic Curve301

3 y2=x3+D,the Local Case304

4 y2=x3-Dx,the Local Case306

5 Hecke L-functions307

6 y2=x3-Dx,the Global Case310

7 y2=x3+D,the Global Case312

8 Final Remarks314

CHAPTER 19 The Mordell-Weil Theorem319

1 The Addition Law and Several Identities320

2 The Group E/2E323

3 The Weak Dirichlet Unit Theorem326

4 The Weak Mordell-Weil Theorem328

5 The Descent Argument330

CHAPTER 20 New Progress in Arithmetic Geometry339

1 The Mordell Conjecture340

2 Elliptic Curves343

3 Modular Curves345

4 Heights and the Height Regulator348

5 New Results on the Birch-Swinnerton-Dyer Conjecture353

6 Applications to Gauss's Class Number Conjecture358

Selected Hints for the Exercises367

Bibliography375

Index385

热门推荐