图书介绍
现代计算技术与中医药信息处理 英文版【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- 吴朝晖,陈华钧,姜晓红著 著
- 出版社: 杭州:浙江大学出版社
- ISBN:9787308084574
- 出版时间:2012
- 标注页数:233页
- 文件大小:73MB
- 文件页数:247页
- 主题词:中国医药学-英文
PDF下载
下载说明
现代计算技术与中医药信息处理 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Overview of Knowledge Discovery in Traditional Chinese Medicine1
1.1 Introduction1
1.2 The State of the Art of TCM Data Resources3
1.2.1 Traditional Chinese Medical Literature Analysis and Retrieval System4
1.2.2 Figures and Photographs of Traditional Chinese Drug Database4
1.2.3 Database of Chinese Medical Formulae5
1.2.4 Database of Chemical Composition from Chinese Herbal Medicine5
1.2.5 Clinical Medicine Database5
1.2.6 TCM Electronic Medical Record Database6
1.3 Review of KDTCM Research6
1.3.1 Knowledge Discovery for CMF Research6
1.3.2 Knowledge Discovery for CHM Research11
1.3.3 Knowledge Discovery for Research of TCM Syndrome14
1.3.4 Knowledge Discovery for TCM Clinical Diagnosis16
1.4 Discussions and Future Directions19
1.5 Conclusions22
2 Integrative Mining of Traditional Chinese Medicine Literature and MEDLINE for Functional Gene Networks27
2.1 Introduction27
2.2 Connecting TCM Syndrome to Modern Biomedicine by Integrative Literature Mining29
2.3 Related Work on Biomedical Literature Mining30
2.4 Name Entity and Relation Extraction Methods33
2.4.1 Bubble-Bootstrapping Method33
2.4.2 Relation Weight Computing35
2.5 MeDisco/3S System36
2.6 Results38
2.6.1 Functional Gene Networks43
2.6.2 Functional Analysis of Genes from Syndrome Perspective45
2.7 Conclusions47
3 MapReduce-Based Network Motif Detection for Traditional Chinese Medicine53
3.1 Introduction53
3.2 Related Work54
3.3 MapReduce-Based Pattern Finding55
3.3.1 MRPF Framework55
3.3.2 Neighbor Vertices Finding and Pattern Initialization57
3.3.3 Pattern Extension58
3.3.4 Frequency Computing59
3.4 Application to Prescription Compatibility Structure Detection61
3.4.1 Motifs Detection Results61
3.4.2 Performance Analysis62
3.5 Conclusions64
4 Data Quality for Knowledge Discovery in Traditional Chinese Medicine67
4.1 Introduction67
4.2 Key Data Quality Dimensions in TCM69
4.2.1 Representation Granularity69
4.2.2 Representation Consistency69
4.2.3 Completeness70
4.3 Methods to Handle Data Quality Problems70
4.3.1 Handling Representation Granularity70
4.3.2 Handling Representation Consistency71
4.3.3 Handling Completeness72
4.4 Conclusions73
5 Service-Oriented Data Mining in Traditional Chinese Medicine75
5.1 Introduction75
5.2 Related Work76
5.2.1 Traditional Data Mining Software76
5.2.2 Data Mining Systems for Specific Field77
5.2.3 Distributed Data Mining Platform77
5.2.4 The Spora Demo78
5.3 System Architecture and Data Mining Service78
5.3.1 Hierarchical Structure78
5.3.2 Service Operator Organization80
5.3.3 User Interaction and Visualization81
5.4 Case Studies82
5.4.1 Case 1: Domain-Driven KDD Support for TCM82
5.4.2 Case 2: Data Mining Based on Distributed Resources84
5.4.3 Case 3: Data Mining Process as a Service84
5.5 Conclusions85
6 Semantic E-Science for Traditional Chinese Medicine87
6.1 Introduction87
6.2 Results89
6.2.1 System Architecture89
6.2.2 TCM Domain Ontology91
6.2.3 DartMapping93
6.2.4 DartSearch94
6.2.5 DartQuery95
6.2.6 TCM Service Coordination98
6.2.7 Knowledge Discovery Service98
6.2.8 DartFlow99
6.2.9 TCM Collaborative Research Scenario100
6.2.10 Task-Driven Information Allocation100
6.2.11 Collaborative Information Sharing101
6.2.12 Scientific Service Coordination102
6.3 Discussion102
6.4 Conclusions103
6.5 Methods103
6.5.1 TCM Ontology Engineering103
6.5.2 View-Based Semantic Mapping104
6.5.3 Semantic-Based Service Matchmaking105
7 Ontology Development for Unified Traditional Chinese Medical Language System109
7.1Introduction109
7.2The Principle and Knowledge System of TCM110
7.3What Is an Ontology?111
7.4Protege 2000: The Tool We Use111
7.5Ontology Design and Development for UTCMLS112
7.5.1 Methodology of Ontology Development113
7.5.2 Knowledge Acquisition115
7.5.3 Integrating and Merging of TCM Ontology117
7.6 Results117
7.6.1 The Core Top-Level Categories120
7.6.2 Subontologies and the Hierarchical Structure120
7.6.3 Concept Structure120
7.6.4 Semantic Structure121
7.6.5 Semantic Types and Semantic Relationships121
7.7 Conclusions124
8 Causal Knowledge Modeling for Traditional Chinese Medicine Using OWL 2129
8.1 Introduction129
8.2 Causal TCM Knowledge Modeling130
8.3 Causal Reasoning130
8.4 Evaluation131
8.5 Conclusions132
9 Dynamic Subontology Evolution for Traditional Chinese Medicine Web Ontology135
9.1 Introduction135
9.2 TCM Domain Ontology136
9.2.1 Ontology Framework136
9.2.2 User Interface139
9.3 Subontology Model140
9.3.1 Preliminaries142
9.3.2 Subontology Definition143
9.3.3 Subontology Operators144
9.4 Ontology Cache for Knowledge Reuse146
9.4.1 Reusing Subontologies as Ontology Cache146
9.4.2 Knowledge Search with Ontology Cache147
9.4.3 On SubO Structural Optimality151
9.5 Dynamic Subontology Evolution152
9.5.1 Chromosome Representation152
9.5.2 Fitness Evaluation154
9.5.3 Genetic Operators154
9.5.4 Evolution Procedure157
9.5.5 Consistency158
9.6 Experiment and Evaluation158
9.6.1 Experiment Design158
9.6.2 Compare Cache Performance160
9.6.3 Knowledge Structure163
9.6.4 Traversal Depth for SubO Extraction164
9.7 Related Work165
9.8 Conclusions166
10 Semantic Association Mining for Traditional Chinese Medicine171
10.1 Introduction171
10.1.1 The Semantic Web for Collaborative Knowledge Discove171
10.1.2 The Motivating Story172
10.1.3 HerbNet: The Knowledge Network for Herbal Medicine173
10.1.4 Paper Organization174
10.2 Related Work174
10.2.1 Domain-Driven Relationship Mining for Biomedicine174
10.2.2 Linked Data on the Semantic Web175
10.2.3 Semantic Association Mining176
10.3 Methods177
10.3.1 Semantic Graph Model177
10.3.2 Hypothesis and Hypothetical Graph178
10.3.3 Evidence and Evidentiary Graph179
10.3.4 Semantic Schema181
10.3.5 Semantic Association Mining182
10.3.6 Semantic Association Ranking184
10.3.7 Summary185
10.4 Evaluation185
10.4.1 Synthetic Graph Generation186
10.4.2 Engine Implementation186
10.4.3 Miner Implementation187
10.4.4 Collaborative Discovery Process189
10.4.5 Result Analysis190
10.5 Use Cases191
10.5.1 The HerbNet192
10.5.2 Formula System Interpretation193
10.5.3 Herb—Drug Interaction Network Analysis194
10.6 Conclusions195
11 Semantic-Based Database Integration for Traditional Chinese Medicine199
11.1 Introduction199
11.2 System Architecture and Technical Features201
11.2.1 System Architecture201
11.2.2 Technical Features201
11.3 Semantic Mediation202
11.3.1 Semantic View and View-Based Mapping202
11.3.2 Visualized Semantic Mapping Tool204
11.4 TCM Semantic Portals205
11.4.1 Dynamic Semantic Query Interface205
11.4.2 Intuitive Search Interface with Concepts Ranking and Semantic Navigation206
11.5 User Evaluation and Lesson Learned208
11.5.1 Feedback from CATCM208
11.5.2 A Survey on the Usage of RDF/OWL Predicates209
11.6 Related Work209
11.6.1 Semantic Web Context209
11.6.2 Conventional Data Integration Context211
11.7 Conclusions211
12 Probabilistic Semantic Relationship Discovery from Traditional Chinese Medical Literature213
12.1 Background213
12.2 Related Work214
12.3 Methods215
12.3.1 Instance Extraction215
12.3.2 Instance Pair Discovery215
12.3.3 Semantic Relationship Evaluation217
12.3.4 Probability-Based Semantic Relationship Extraction218
12.4 Results and Discussions220
12.5 Conclusions221
13 Deriving Similarity Graphs from Traditional Chinese Medicine Linked Data on the Semantic Web223
13.1 Introduction223
13.2 Related Work224
13.2.1 Taxonomy-Based Approach224
13.2.2 Relationship-Based Approach224
13.3 SST Approach225
13.3.1 Similarity Transition225
13.3.2 Similarity between Sets of Objects226
13.4 Experiments and Results227
13.4.1 Dataset Preparation228
13.4.2 Results Analysis229
13.4.3 Result Visualization231
13.5 Conclusions232
热门推荐
- 1819128.html
- 303930.html
- 3591024.html
- 2461448.html
- 2596148.html
- 3552004.html
- 2839755.html
- 37225.html
- 362145.html
- 2615501.html
- http://www.ickdjs.cc/book_2538838.html
- http://www.ickdjs.cc/book_369040.html
- http://www.ickdjs.cc/book_722497.html
- http://www.ickdjs.cc/book_3708317.html
- http://www.ickdjs.cc/book_2259538.html
- http://www.ickdjs.cc/book_2280625.html
- http://www.ickdjs.cc/book_2868356.html
- http://www.ickdjs.cc/book_3676651.html
- http://www.ickdjs.cc/book_2929684.html
- http://www.ickdjs.cc/book_3000411.html