图书介绍

数学物理方程【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

数学物理方程
  • 姜玉山等编 著
  • 出版社: 北京:清华大学出版社
  • ISBN:9787302374428
  • 出版时间:2014
  • 标注页数:143页
  • 文件大小:14MB
  • 文件页数:153页
  • 主题词:数学物理方程

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

数学物理方程PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 偏微分方程模型与定解问题1

1.1 弦振动方程模型及定解条件3

1.1.1 弦振动方程的导出3

1.1.2 定解问题与定解条件5

习题1.16

1.2 其他典型方程模型与叠加原理7

1.2.1 热传导方程模型7

1.2.2 调和方程模型8

1.2.3 交通流模型9

1.2.4 叠加原理10

习题1.212

2 特征线法与行波法13

2.1 特征线法13

2.1.1 一阶常系数线性方程求解13

2.1.2 一维波动方程的通解16

习题2.119

2.2 达朗贝尔公式20

2.2.1 达朗贝尔公式的导出20

2.2.2 传播波21

2.2.3 依赖区间、决定区域和影响区域24

习题2.225

2.3 三维波动方程的柯西问题25

2.3.1 三维波动方程的泊松公式26

2.3.2 泊松公式的物理意义28

2.3.3 降维法求解二维波动方程的柯西问题28

习题2.330

2.4 齐次化原理及应用30

2.4.1 齐次化原理30

2.4.2 齐次化原理应用32

2.4.3 高维非齐次波动方程的柯西问题33

习题2.434

3 分离变量法36

3.1 直角坐标系下的分离变量法36

3.1.1 有界弦的自由振动问题36

3.1.2 有限长杆的热传导问题41

3.1.3 分离变量法总结及固有值问题43

习题3.146

3.2 极坐标下的分离变量法46

习题3.249

3.3 非齐次方程问题与非齐次边界问题50

3.3.1 非齐次方程的特征函数法50

3.3.2 非齐次边界问题53

习题3.355

4 格林函数法56

4.1 狄拉克函数与基本解56

4.1.1 狄拉克函数56

4.1.2 泊松方程的基本解59

习题4.160

4.2 格林公式及格林函数61

4.2.1 散度定理与格林公式61

4.2.2 泊松方程狄利克雷问题的格林函数62

习题4.264

4.3 特殊区域上的格林函数及应用64

4.3.1 格林函数的求法64

4.3.2 格林函数应用67

习题4.369

5 积分变换法71

5.1 傅里叶变换与拉普拉斯变换71

5.1.1 傅里叶变换及其性质71

5.1.2 拉普拉斯变换及其性质73

5.1.3 典型函数的积分变换74

习题5.177

5.2 傅里叶变换应用举例77

习题5.281

5.3 拉普拉斯变换应用举例82

习题5.388

6 特殊函数89

6.1 贝塞尔函数的推导89

6.1.1 幂级数解法89

6.1.2 贝塞尔函数90

习题6.193

6.2 贝塞尔函数的性质93

6.2.1 贝塞尔函数的递推公式93

6.2.2 贝塞尔函数的零点与正交模95

6.2.3 函数按贝塞尔函数系展开96

习题6.297

6.3 贝塞尔函数的应用97

习题6.3101

6.4 勒让德函数101

6.4.1 勒让德方程的求解101

6.4.2 勒让德多项式103

习题6.4105

6.5 勒让德多项式应用105

6.5.1 函数按勒让德多项式展开105

6.5.2 球形区域上调和方程边值问题求解107

习题6.5109

7 极值原理与能量估计110

7.1 泊松方程的极值原理110

7.1.1 极大值原理110

7.1.2 泊松方程边值问题解的最大模估计112

7.1.3 强极值原理112

习题7.1114

7.2 热传导方程的极值原理115

7.2.1 极值原理115

7.2.2 第一边值问题解的唯一性116

7.2.3 解的最大模估计117

习题7.2118

7.3 波动方程的能量估计118

7.3.1 振动的动能和位能118

7.3.2 初边值问题解的唯一性与稳定性120

习题7.3122

附录A 傅里叶变换函数表123

附录B 拉普拉斯函数表126

附录C 高斯函数和误差函数129

附录D Γ函数131

部分习题答案及提示134

参考文献140

热门推荐